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Abstract

The theoretical foundations of atom dynamics in laser %elds are reviewed in relation with applications to
laser spectroscopy, control of atomic motion, atom traps and frequency standards. We present an ab initio
approach to the description of internal and translational dynamics of multilevel atoms in laser %elds based
on the equations for the atomic density matrix. Semiclassical density matrix equations are reviewed and
applied to the description of properties of atomic populations and coherences for a classically moving atom.
Quantum-kinetic equations for the atomic density matrix are reviewed for the multilevel interaction schemes.
The procedure of reduction of the quantum-kinetic equations to the Fokker–Planck quasiclassical kinetic
equation for the atomic distribution function is described. Quasiclassical kinetic equations are applied to the
multilevel atomic schemes to describe the translational atomic dynamics. Basic types of the dipole radiation
forces on atoms are considered for realistic cases of multilevel dipole interaction schemes. The applications
of the theory of atomic dynamics in laser %elds to the laser cooling, magneto-optical and optical dipole traps,
and optical lattices are discussed. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

The purpose of this review is to describe the density matrix approach to atomic motion in laser
%elds, present theoretical fundamentals of translational dynamics of atoms in laser %elds, and outline
the applications of theoretical approaches to laser control of atomic motion, including laser cooling
of atoms and atom traps. For the past decades both internal and translational dynamics of atoms in
laser %elds have been investigated for many speci%c dipole interaction schemes and under diEerent
conditions. Extensive theoretical and experimental studies of atomic dynamics resulted in the devel-
opment of the eEective techniques to control both the internal and translational atomic states. Among
such techniques one can mention optical pumping, velocity-selective excitation of atoms, coherent
population trapping and methods of cooling and trapping atoms, deFection, reFection and splitting
atomic beams, and guiding atoms in laser %elds. It can nowadays be said that the development of
the above methods resulted in the creation of foundations of atom manipulation with laser light
and atom optics (Letokhov and Chebotayev, 1977; DemtrGoder, 1996; Minogin and Letokhov, 1987;
Kazantsev et al., 1990; Arimondo et al., 1992; Berman, 1997; Grimm et al., 1999; Metcalf and van
der Straten, 1999; Balykin et al., 2000).

From a general physical point of view both the internal and translational dynamics of an atom
in a laser %eld can be attributed to one of the two basic types according to the relation between
the contributions of the induced and spontaneous transitions. At short interaction time �int compared
with the spontaneous decay times, �int��sp, spontaneous transitions cannot play a noticeable role
in atomic dynamics. In this relatively simple pure quantum-mechanical case the atomic dynamics
is mostly a coherent one, well de%ned by the time evolution of the initial atom state and initial
shape of the atom wavepacket. This case is of basic importance for the coherent atom control by
pulsed laser %elds and for atom optics. Quite a diEerent and most complicated case occurs when
the interaction time is of the order of or exceeds the characteristic relaxation times de%ned by the
spontaneous decays, �int & �sp. In this most frequently investigated case atomic transitions induced
by a laser %eld are interrupted by a stochastic process of spontaneous photon emission. As a result,
spontaneous decays lead to a relaxation of the internal atom states to the quasi-stationary states while
the quantum-statistical Fuctuations in atomic momentum cause the atomic wave packet to perform
a stochastic motion and drift in the momentum space. This latter case of quantum-statistical atom
dynamics is of importance for applications related with spectroscopic studies of atoms and control
of atomic motion by continuous laser %elds.

In this paper we concentrate on the quantum-statistical atom dynamics paying basic attention to the
excitation processes and dynamics for multilevel interaction schemes. While internal and translational
dynamics of a two-level atom is relatively simple, the dynamics of multilevel atoms exhibits many
new features speci%c of multilevel interaction schemes.
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Among studies of the problems of translational dynamics of multilevel atoms in the laser %elds
the most important is the quantum-statistical approach based on the quantum-kinetic equations for
the atomic density matrix. This general approach can be applied to any speci%c dipole interaction
scheme between an atom and the laser %eld. Depending on the level of simpli%cation this approach
can give a simple description of the internal atomic states in the framework of the semiclassical
approach, or describe the time evolution of the internal and translational atomic state in terms of
quasiclassical approach, and %nally give the most complete description of atomic dynamics in terms
of a fully quantum-kinetic approach.

This paper aims at the review of basic physical principles of atomic dynamics with applications
to basic schemes of laser cooling and trapping of multilevel atoms. We discuss atomic dynamics for
practically important laser %eld con%gurations and the multilevel dipole interaction schemes relevant
to the experiments in the %eld. The review considers three basic levels of the theoretical description
of atomic dynamics in laser %elds. First, a relatively simple semiclassical approach is used for
describing the internal atomic dynamics and dipole radiation forces on atoms. This approach treats
atoms as classically moving systems possessing quantized internal states (Sections 2 and 3). The
most general quantum-statistical description in terms of the quantum-kinetic equations for the atomic
density matrix is given in Section 4. The quasiclassical level of description is discussed %rst in
general in Section 5 and is applied later in Sections 6–8 for description of laser cooling of atoms
and atomic motion in the atom traps.

2. Semiclassical atomic density matrix

In many conventional situations the dipole interaction of an atom with a laser %eld can be treated
assuming that the atomic center of mass moves classically. This assumption is always justi%ed if
the change in atomic momentum caused by the photon recoil associated with the absorption or
emission of the laser %eld photons and emission of the vacuum %eld photons may be considered
unimportant under the conditions of a speci%c problem. In such a case the only eEect of the dipole
interaction of the atom with a laser %eld is an excitation of a classically moving atom at the internal
transitions. In this case the internal atomic dynamics is described by the semiclassical atomic density
matrix which parametrically depends on the classical coordinates of the atomic center of mass. In
this section we introduce the concept of the semiclassical atomic density matrix and describe the
speci%c forms of the density matrix equations for the multilevel interaction schemes. The material
presented below represents a particular case of application of a general quantum-statistical concept
of the density matrix to a case of the electric dipole interaction of an atom with the electromagnetic
%eld (Neumann, 1955; Fano, 1957; Haar, 1961; Landau and Lifshitz, 1977; Blum, 1981).

2.1. Dynamic equations for a motionless atom

We %rst recall the basic notions on the atomic density matrix for a case when a motionless atom
interacts with a laser %eld at short times compared with the spontaneous decay times, �int��sp. In this
case the dynamics of the internal atomic states is completely described by the SchrGodinger equation
with the atomic wave function �=�(�; t) which depends on the set of coordinates �=�1; �2; : : : ; �n
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used for the description of the internal atomic motion, i.e. the motion of the electrons and nuclei in
the atom. The atomic wave function is assumed to be normalized “per a single atom”.

Under the dipole interaction of a motionless atom with a classical laser %eld E = E(r; t) the
Hamiltonian H includes a proper atomic Hamiltonian Ha = Ha(�) which depends on the internal
atomic coordinates �, and the dipole interaction operator V = −d · E;

H = Ha + V = Ha − d · E ; (1)

where d = d(�) is the operator of the electric dipole moment of the atom or simply the electric
dipole operator. Proper atomic Hamiltonian is assumed to possess the atomic energy eigenvalues En

and eigenfunctions �n(�; t),

�n(�; t) =  n(�)e−iEnt=˜;

Ha n(�) = En n(�) ; (2)

describing the stationary states of the atom in the absence of the dipole perturbation V . The atomic
eigenfunctions  n(�) are assumed to satisfy the orthonormalization conditions,∫

 ∗
m(�) n(�) d3� = �mn : (3)

Note that we use a simpli%ed notation for the diEerential taken over the internal coordinates, d3� =
d3�1 : : : d3�n.

The decomposition of the atomic wave function over the time-dependent eigenfunctions of a proper
atomic Hamiltonian

�(�; t) =
∑

ak�k(�; t) ; (4)

gives the decomposition of the atomic density matrix considered as a function of atomic coordinates
� and �′ as

�(�; �′; t) = �(�; t)�∗(�′; t) =
∑
m;n

�mn m(�) ∗
n (�

′)e−i(Em−En)t=˜ ; (5)

where the atomic density matrix elements de%ned with respect to the time-dependent eigenfunctions
are

�mn = ama∗n : (6)

The atomic density matrix function satis%es the equation of motion

i˜ 99t �(�; �′; t) = (H (�) − H ∗(�′))�(�; �′; t) ; (7)

where it is assumed that the Hamiltonian H (�) acts on coordinates � and the Hamiltonian H (�′)
acts on coordinates �′, and the equations of motion for the atomic density matrix elements are

i˜ 99t �kl =
∑
m

Vkm(t)�ml −
∑
n

�knVnl(t) : (8)

In the above interaction representation

Vkl(t) =
∫

�∗
k (�; t)V (�)�l(�; t) d3� = Vklei!klt (9)
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are the matrix elements of the dipole interaction operator de%ned with respect to the time-
dependent eigenfunctions and !kl = (Ek − El)=˜. The quantities

Vkl =
∫

 ∗
k (�)V (�) l(�) d3� = −dkl · E (10)

are the matrix elements of the interaction operator taken with respect to the time-independent eigen-
functions and

dkl =
∫

 ∗
k (�)d(�) l(�) d3� (11)

are the matrix elements of the atomic dipole moment.
Decomposition of the atomic wave function over the time-independent eigenfunctions  k(�) of a

proper atomic Hamiltonian,

�(�; t) =
∑

ãk k(�) (12)

gives the decomposition of the atomic density matrix function as

�(�; �′; t) =
∑
m;n

�̃mn m(�) ∗
n (�

′) : (13)

In the same interaction representation, the density matrix elements de%ned with respect to the
time-independent eigenfunctions, �̃mn = ãmã∗n ; are related to the density matrix elements de%ned
with respect to the time-dependent eigenfunctions, as

�̃mn = �mne−i!mnt :

The equations of motion for the density matrix elements �̃mn,

i˜ 99t �̃kl = (Ek − El)�̃kl +
∑
m

Vkm�̃ml −
∑
n

�̃knVnl ; (14)

diEer from Eqs. (8) by the additional energy terms.

2.2. Dynamic equations for a moving atom

2.2.1. Galileo transformation
The structure of the semiclassical density matrix equations for a classically moving atom can

always be found by a transformation from the atom rest frame to the laboratory frame. As before
we neglect here the spontaneous relaxation and consider only the dynamic terms in the semiclassical
density matrix.

Assume that the atomic center of mass has coordinates r; t in the laboratory frame and coordinates
r′; t′ in the atom rest frame. For simplicity, the two reference frames may be considered to coincide
at the initial instant of time t = t′ = 0. At any arbitrary instant of time the coordinates of the atom
in the two reference frames are connected by the Galileo transformation,

r= r′ + vt′; t = t′ ;

where v = dr=dt is the velocity of the atom in the laboratory frame.
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In Eqs. (8) and (14) the time derivative is considered to be taken in the atom frame, i.e. as 9=9t′.
Changing the variables from r′ and t′ to r and t according to the inverse Galileo transformation,

r′ = r− vt; t′ = t ;

one can express the time derivative in the atom frame through the derivatives in the laboratory
frame,

9
9t′ =

9t
9t′

9
9t +

9r
9t′

9
9r =

9
9t + v

9
9r :

The last equation represents a general result. The density matrix equations for a moving atom include
not the partial but the total (or convective) time derivative

d
dt

=
9
9t + v

9
9r : (15)

The total time derivative describes the evolution of the atomic density matrix both in time and space.
The transformation to the laboratory frame thus shows that for a classically moving atom the

density matrix equations diEer from Eqs. (8) and (14) by a meaning of the time derivative only.
For a moving atom the equations for the elements of the density matrix � are

i˜ d
dt

�kl = −
∑
m

(dkm · E)ei!kmt�ml +
∑
n

�kn(dnl · E)ei!nlt ; (16)

and for the elements of the density matrix �̃ are

i˜ d
dt

�̃kl = (Ek − El)�̃kl −
∑
m

(dkm · E)�̃ml +
∑
n

�̃kn(dnl · E) : (17)

In the above equations the density matrix elements are functions of a space coordinate and time
and parametrically depend on the atomic velocity, �kl = �kl(r; v; t); �̃kl = �̃kl(r; v; t): The laser %eld
is considered as taken at the position of the atom, E= E(r; t).

2.2.2. Rotating wave approximation
When a multilevel atom interacts with the laser %eld composed of monochromatic waves, say,

plane travelling waves,

E=
∑
a

(Eaei(kar−!at) + Ea∗e−i(kar−!at)) ; (18)

near resonant to the atomic transitions with frequencies !mn = (Em − En)=˜¿ 0, the “fast” terms
oscillating at frequencies !a + !mn ≈ 2!a (twice the optical frequencies !a) can be neglected
compared with the “slow” terms oscillating at diEerent frequencies |!a −!mn|�!a (see, e.g., Allen
and Eberly, 1975). In this rotating wave approximation (RWA) the dynamic terms in the density
matrix equations include only slowly varying terms. Eq. (16) de%ning the density matrix � can be
written in RWA as

i˜ d
dt

�kl =−
∑
a;m

(dkm · Ea)�mleikar−i(!a−!km)t +
∑
a;n

(dnl · Ea)�kneikar−i(!a−!nl)t

−
∑
a;m

(dkm · Ea∗)�mle−ikar+i(!a−!mk)t +
∑
a;n

(dnl · Ea∗)�kne−ikar+i(!a−!ln)t : (19)
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In the above form of writing it is assumed that the equations include the terms with positive atomic
transition frequencies only. The %rst sum is assumed to include the terms with frequencies !km =
(Ek −Em)=˜¿ 0; the second sum with frequencies !nl ¿ 0; the third sum with frequencies !mk ¿ 0;
and the fourth sum with frequencies !ln ¿ 0. The quantities �mn =!a−!mn entering Eqs. (19) have
accordingly the meaning of the detunings of the laser %eld frequencies !a with respect to the atomic
transition frequencies !mn ¿ 0.

2.2.3. Dipole interaction matrix elements
For an arbitrarily polarized laser %eld (18) the dipole interaction terms can be evaluated by

decomposing the dipole moment d and the %eld amplitudes Ea;Ea∗ over the spherical unit vectors

e0 = ez; e± = ∓ 1√
2

(ex ± iey) : (20)

With the de%nition for the spherical vector components d0; d± and Ea
0 ; E

a± identical to that for the
spherical unit vectors (20) the decompositions are

d = d0e0 − d−e+ − d+e− ;

Ea = Ea
0e0 − Ea

−e+ − Ea
+e− :

This gives for the scalar product

d · Ea = d0Ea
0 − d−Ea

+ − d+Ea
− ;

and for the matrix elements of the dipole interaction terms

dkl · Ea = 〈k|d|l〉 · Ea = 〈k|d0|l〉Ea
0 − 〈k|d−|l〉Ea

+ − 〈k|d+|l〉Ea
− : (21)

The matrix elements (dq)kl = 〈k|dq|l〉, q = 0;±1; of the dipole moment spherical components can
usually be expressed through the reduced dipole matrix element 〈k‖d‖l〉. In typical dipole interaction
schemes the atomic states are described by the angular momentum states |k〉= |�jm〉. In such cases
the dependence of the dipole matrix elements on the magnetic quantum numbers can be found with
the use of the Wigner–Eckart theorem (see, e.g., Edmonds, 1974; Zare, 1988)

〈�′j′m′|dq|�jm〉 = (−1) j′−m′

(
j′ 1 j

−m′ q m

)
〈�′j′‖d‖�j〉 ; (22)

where 〈�′j′‖d‖�j〉 is the reduced dipole matrix element.
In applications related to the control of atomic motion by the laser %elds of basic interest are

the dipole interaction schemes which include the hyper%ne structure states |�FM 〉, where � ≡ nLSJI
denotes the quantum numbers of the %ne structure states. For such schemes the dipole matrix elements
can be evaluated as

〈�′F ′M ′|dq|�FM 〉 = (−1)F
′−M ′

(
F ′ 1 F

−M ′ q M

)
〈�′F ′‖d‖�F〉 ; (23)
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where the reduced matrix element for the hyper%ne structure transition is expressed through the
reduced matrix element 〈�′‖d‖�〉 for the %ne structure transition,

〈�′F ′‖d‖�F〉 = (−1)J
′+I+F+1

√
(2F + 1)(2F ′ + 1)

{
J ′ F ′ I

F J 1

}
〈�′‖d‖�〉 : (24)

The values of the 3− j and 6− j symbols entering Eqs. (22)–(24) can be found for speci%c atomic
schemes in Edmonds (1974), Sobelman (1979) and Zare (1988).

2.3. Spontaneous relaxation terms and complete semiclassical equations

The spontaneous relaxation terms in the equations for the semiclassical density matrix follow from
the consideration of the dipole interaction of the atom with a vacuum electromagnetic %eld treated
as a quantized photon %eld. The basic lines of derivation are explicitly shown below for the simplest
case of a two-level atom. The relaxation terms for the multilevel atomic schemes are given below
for a suQciently general and practically most important case of the hyper%ne structure states.

2.3.1. Quantized vacuum =eld
We %rst recall the %eld quantization procedure needed for the consideration below (Heitler, 1944;

Berestetskii et al., 1971; Louisell, 1973; Loudon, 1983). The quantization procedure treats a free
vacuum %eld as a stationary system of quantum-mechanical harmonic oscillators described by the
Hamiltonian Hv,

Hv =
∑

˜!#(a#a+
# + 1=2) ; (25)

where the annihilation a# and creation a+
# operators satisfy the commutation relations

[a#; a#′] = [a+
# ; a

+
#′] = 0; [a#; a+

#′] = �##′

and index #=(k; i) speci%es a particular %eld oscillator with wave vector k and polarization i=1; 2;
and !# = kc.

Each stationary state of a set of harmonic oscillators is described by the wave function &=&n1n2n3 :::

which is a product of the stationary wave functions ’n# of the %eld oscillators,

&n1n2n3 ::: =
∏
n#

’n# ; (26)

where n# is the number of photons of a type #=(k; i) in a vacuum %eld. The partial wave functions
’n# = |n#〉 satisfy the usual orthonormalization conditions

〈’n# |’n(〉 = 〈n#|n(〉 = �#( : (27)

The action of the annihilation and creation operators on the %eld oscillator wave function ’n# =|n#〉
is de%ned by the expressions which follow from the equations for the matrix elements of the harmonic
oscillator

a#|n#〉 =
√
n#|n# − 1〉 ;

a+
# |n#〉 =

√
n# + 1|n# + 1〉 ;

a+
# a#|n#〉 = n#|n#〉 ;

(28)
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where the last expression jointly with orthonormalization condition (27) de%ne the number of photons
n# in the mode # = (k; i) of a vacuum %eld,

〈&n1n2n3 :::|a+
# a#|&n1n2n3 :::〉 = 〈n#|a+

# a#|n#〉 = 〈n#|n#|n#〉 = n# : (29)

The energy of a quantized vacuum %eld according to the above equations is

Ev = 〈&n1n2n3 :::|Hv|&n1n2n3 :::〉 =
∑

˜!#(n# + 1
2) : (30)

The consideration of the vacuum %eld variables as operators makes both the vector potential and
the electric and magnetic %elds to become operators as well. In terms of the annihilation and creation
operators the operator of the vector potential A and the operators of the electric %eld E and magnetic
%eld B are

A =
∑

(A#a# +A∗
#a

†
#) ;

E=
∑

(E#a# + E∗#a
†
#) ;

B=
∑

(B#a# + B∗
#a

†
#) ;

(31)

where A#; E# and B# are the vector potential, electric and magnetic %eld of a “single photon”,

A# = c

√
2)˜
V!#

e#eikr ;

E# = i

√
2)˜!#

V
e#eikr ;

B# = ic

√
2)˜
V!#

[k × e#]eikr ;

(32)

and e# (#=(k; i)) is a unit vector de%ning the polarization of a plane travelling wave with the wave
vector k; and V is the quantization volume. The above relations fully de%ne a vacuum %eld as a
quantum-mechanical system.

2.3.2. Two-level atom
To maintain formal similarity with the quantum-mechanical description of the vacuum %eld and

a two-level atom one can introduce the atomic lowering b and rising b+ operators de%ned by the
equations

b|g〉 = 0; b|e〉 = |g〉; b+|g〉 = |e〉; b+|e〉 = 0 : (33)

With these de%nitions the Hamiltonian for a motionless two-level atom can be written as

Ha = ˜!0b+b : (34)

In accordance with Eqs. (33) the eigenvalues of the atomic Hamiltonian Ha are de%ned here assuming
the ground state to have zero energy,

Eg = 〈g|Ha|g〉 = 0; Ee = 〈e|Ha|e〉 = ˜!0 : (35)
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The matrix elements of the dipole moment operator d̂ for a two-level atom can be chosen to be real,

〈g|d̂|g〉 = 〈e|d̂|e〉 = 0; 〈e|d̂|g〉 = 〈g|d̂|e〉 = d : (36)

The last equations being compared with Eqs. (33) show that the atomic dipole moment operator is
represented in terms of the atomic operators b and b+ as

d̂ = d(b + b+) : (37)

With the above de%nitions the dipole interaction operator Ṽ responsible for the interaction of a
two-level atom with the vacuum %eld can be written in RWA as

Ṽ = −d ·
∑

(E#b+a# + E∗#ba
†
#) ; (38)

where the summation includes all the modes of the vacuum %eld. The matrix elements of the RWA
interaction operator other than zero are only for the one-photon absorption or emission processes,

Ṽ eg;n#;n#+1 = 〈e; n#|Ṽ |g; n# + 1〉 = −d · E#
√

n# + 1 ;

Ṽ ge;n#+1;n# = 〈g; n# + 1|Ṽ |e; n#〉 = −d · E∗#
√

n# + 1 :
(39)

Considering the SchrGodinger equation with the Hamiltonian that includes the vacuum %eld Hamil-
tonian, proper atomic Hamiltonian and the dipole interaction operator,

H =
∑

˜!#(a#a+
# + 1

2) + ˜!0b+b− d ·
∑

(E#b+a# + E∗#ba
†
#) ; (40)

one can derive a set of equations for the probability amplitudes ck;n# which describe the joint states
of a two-level atom and the vacuum %eld. To do so, the total wave function for an “atom+vacuum
%eld” system is to be decomposed over the eigenfunctions of a two-level atom and the vacuum %eld,

� =
∑
k#

ck;n# ke−iEk t=˜
∏
#

’n#e
−iE#t=˜ : (41)

It is to be noted here that the probability amplitudes ck;n# depend on all the occupation numbers
n#. Using for shortness a single index n# in Eq. (41) we assume here that the quantity n# describes
the manifold of the quantum occupation numbers, n# ≡ {n#} = {n1; n2; : : : ; n# : : :}; where n1 is the
number of photons in the vacuum mode 1, n2 is the number of photons in the vacuum mode 2; : : : ;
and n# is number of photons in the vacuum mode #. It is to be also kept in mind that the atomic
eigenfunctions  k satisfy the eigenvalue equations

Ha n = En n

with eigenvalues (35), and the vacuum %eld eigenfunctions satisfy the equations

Hv’n# = E#’n# ; E# = ˜!#(n# + 1
2) :

Substituting the decomposition (41) into the SchrGodinger equation with Hamiltonian (40) one can
get a set of equations for the probability amplitudes ce;n# and cg;n# :

iċe;n# = −1
˜
∑
#

d · E#
√

n# + 1e−i.#tcg;n#+1 ;

iċg;n#+1 = −1
˜
∑
#

d · E∗#
√

n# + 1ei.#tce;n# ;
(42)
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where .# = !# − !0 is the detuning of the vacuum mode frequency !# with respect to the atomic
transition frequency !0.

An in%nite set of equations (42) describes the quantized states of a closed system “atom+vacuum
%eld”. Taking the products of the probability amplitudes according to Eq. (6) one can introduce the
density matrix for the “atom+vacuum %eld” system de%ned by the density matrix elements

�kl;n#n( = ck;n#c
∗
l;n( : (43)

The density matrix with elements �kl;n#n( describes both the state of the atom (indices k; l) and the
states of the vacuum %eld (indices n# and n(). Taking a trace over the vacuum %eld occupation
numbers one can introduce the semiclassical atomic density matrix �kl:

�ee =
∑
#

ce;n#c
∗
e;n# ;

�eg =
∑
#

ce;n#c
∗
g;n#+1 ;

�gg =
∑
#

cg;n#+1c∗g;n#+1 ;

(44)

which satis%es the usual Hermiticity condition, �ge = �∗eg:
Note now that the density matrix elements (43) should in general be averaged over an in%nite

number of vacuum modes (of which each includes an in%nite number of photon states). The aver-
aging procedure can be considerably simpli%ed if one follows the Weisskopf–Wigner theory of the
spontaneous emission which states that an explicit form of the relaxation terms does not depend
on the speci%c state of a vacuum %eld (Weisskopf and Wigner, 1930; Agarwal, 1974). According
to this important idea one can choose the simplest state of the vacuum %eld corresponding to zero
occupation numbers for all the vacuum modes. A two-level atom can accordingly be considered as
initially occupying the excited state |e〉.

One may thus assume that at the initial instant of time t = ti the “atom+vacuum %eld” system
occupies a single state |e; 0〉 with the probability amplitude ce;0(ti) = 1, and all the other initial
probability amplitudes are equal to zero. In particular, the initial probability amplitudes for the states
|g; 1#〉 into which the atom could emit a photon are also equal to zero, cg;1#(ti) = 0. Under this
simplest choice of the initial conditions the equations for the probability amplitudes describing the
interaction of the atom with a vacuum %eld are:

ċe;0 =
i
˜
∑
#

d · E#e−i.#tcg;1# ;

ċg;1# =
i
˜ d · E

∗
#e

i.#tce;0 : (45)

Here the %rst equation describes the spontaneous decay of the atom into all the modes of the vacuum
%eld. The second equation describes an excitation of a partial vacuum mode due to the spontaneous
decay. The probability amplitudes entering Eqs. (45) de%ne the semiclassical atomic density matrix
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elements as

�ee = ce;0c∗e;0 ;

�eg =
∑
#

ce;0c∗g;1#
= ce;0

∑
#

c∗g;1#
;

�gg =
∑
#

cg;1#c
∗
g;1#

:

(46)

The above relations can now be used to %nd the relaxation terms in the equations for the semiclassical
atomic density matrix. Taking the formal solution of the second equation in (45),

cg;1# =
i
˜ d · E

∗
#

∫ t

ti

ei.#t′ce;0(t′) dt′ ;

and substituting it into the %rst equation (45) one gets

ċe;0 = − 1
˜2

∑
#

|d · E#|2
∫ t

ti

ei.#(t′−t)ce;0(t′) dt′ : (47)

The sum taken in the last equation over all vacuum modes can be replaced by an integral over the
wave vectors k. Taking into account the fact that a single vacuum mode occupies in the wave vector
space a “volume”

(Vk)3 = (2)=L)3 = (2))3=V ;

where V = L3, one can rewrite the above replacement as∑
#

→ V
(2))3

∫
d3k :

Next, one can make a transition to the integral over the frequencies ! = kc and the wave vector
directions (do = sin 0 d0 d’),

V
(2))3

∫
d3k → V

(2))3

∫
k2 dk do =

V
(2)c)3

∫
!2 d! do :

Note next that according to the energy conservation law the frequencies of the emitted photons are
to be very close to the atomic transition frequency, ! � !0; while the probability amplitudes ce;0(t′)
are the slowly varying functions of the frequency !: Under the last assumptions the integral over
the frequencies is reduced to a well-known formula∫

ei(!−!0)(t′−t) d! = 2)�(t − t′) :

The integration over time reduces the integral in Eq. (47) to the %nal integral over the solid angle.
Assuming that the direction of the quantization axis Oz is de%ned by the direction of the vector E#
one can write the scalar product in Eq. (47) as d · E# = |d| |E#|cos 0 and get for the %nal integral∫

cos2 0 do = 4)=3: This reduces Eq. (47) to

ċe;0 = −2ce;0 ; (48)
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where 2 is half of the spontaneous decay rate,

22 = Wsp =
4|d|2!3

0

3˜c3 : (49)

Taking the time derivative of the %rst equation in (46) and making use of Eq. (48) one %nally gets
the equation describing the spontaneous decay of the upper-state density matrix element,

9
9t �ee = −22�ee ; (50)

Taking the time derivative of the second equation in (46) and noting that the second term of the
derivative decays to zero according to the %rst equation in (45) one gets the equation describing the
spontaneous decay of the oE-diagonal density matrix element,

9
9t �eg = −2�eg : (51)

For the rate of change of the ground-state density matrix element �gg one can get by the above
method the equation

9
9t �gg = 22�ee : (52)

The validity of the last equation can also be seen from Eq. (50) and the normalization condition for
the semiclassical atomic density matrix elements, �gg + �ee = 1.

The above spontaneous relaxation terms being added to the dynamic terms completely de%ne the
semiclassical density matrix equations for both motionless and moving two-level atoms since the
relaxation terms are invariant under the Galileo transformations. Complete semiclassical equations
for the atomic density matrix describing the interaction of a classically moving two-level atom with
a classical light %eld E can be %nally written by collecting together the dynamic and stochastic
terms (50)–(52). For the basic case of interaction of a two-level atom with a monochromatic plane
travelling laser wave,

E= 1
2 E0(ei(kr−!t) + e−i(kr−!t)) = E0 cos(kr− !t) ; (53)

the RWA equations are

d
dt

�ee = i4(�geei(kr−�t) − �ege−i(kr−�t)) − 22�ee ;

d
dt

�eg = i4(�gg − �ee)ei(kr−�t) − 2�eg ;

d
dt

�gg = i4(�ege−i(kr−�t) − �geei(kr−�t)) + 22�ee ;

(54)

where the Rabi frequency is de%ned as 4 = d · E=2˜ and � = ! − !0 is the detuning of the laser
wave frequency with respect to the atomic transition frequency.

2.3.3. Multilevel atom
The spontaneous relaxation terms (5�)kl = 〈k|5�(r; p; t)|l〉 coming from the dipole interaction of

a multilevel atom with a vacuum %eld can be found by the same Weisskopf–Wigner procedure
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Fig. 1. Multilevel atomic energy scheme consisting of the ground-state magnetic sublevels |�gFgMg〉 and the excited-state
magnetic sublevels |�eFeMe〉.

considered above for a two-level atom. By adding these terms to the dynamic terms one can obtain
a complete equation for the semiclassical atomic density matrix,

i˜ d
dt

�kl = Dynamic Terms + i˜〈k|5�|l〉 : (55)

Below we specify the spontaneous relaxation terms for the dipole interaction schemes which
include the hyper%ne structure states |�FM 〉, where � ≡ nLSJI denotes all the quantum numbers of
the %ne structure atomic states. For such schemes the ground-state magnetic sublevels are denoted
as |�gFgMg〉 and the excited-state magnetic sublevels as |�eFeMe〉 (Fig. 1). With these notations the
spontaneous relaxation terms entering the semiclassical equations (55) for the atomic density matrix
elements �kl =��aFaMa;�bFbMb = 〈�aFaMa|�|�bFbMb〉 can be shown to be (Happer, 1972; Ducloy, 1973;
Cohen-Tannoudji, 1977; Omont, 1977; Rautian and Shalagin, 1991):

〈�e1Fe1Me1 |5�|�e2Fe2Me2〉 = −(2�e1Fe1
+ 2�e2Fe2

)〈�e1Fe1Me1 |�|�e2Fe2Me2〉 ;

〈�eFeMe|5�|�gFgMg〉 = −2�eFe〈�eFeMe|�|�gFgMg〉 ;

〈�g1Fg1Mg1 |5�|�g2Fg2Mg2〉
=

∑
�e1 ;�e2 ;Fe1 ;Fe2 ;Me1 ;Me2

(Fg1Fg2Mg1Mg2 |A|Fe1Fe2Me1Me2)〈�e2Fe2Me2 |�|�e1Fe1Me1〉 ;

〈�gFgM ′
g|5�|�gFgMg〉 =

∑
�eFeMeM ′

e

(FgMgM ′
g|A|FeMeM ′

e)〈�eFeM ′
e|�|�eFeMe〉 ; (56)

where the coeQcients (Fg1Fg2Mg1Mg2 |A|Fe1Fe2Me1Me2) symbolically including the Einstein coeQcient
A de%ne the joint relaxation of two magnetic substates. These coeQcients can be expressed through
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the Clebsch–Gordan coeQcients (FgMgM ′
g|A|FeMeM ′

e) according to the equations:

(Fg1Fg2Mg1Mg2 |A|Fe1Fe2Me1Me2)

= (2�e1Fe1 ;�g1Fg1
+ 2�e2Fe2 ;�g2Fg2

)
∑

q=0;±1

(Fg1Mg11q|Fe1Me1)(Fg2Mg21q|Fe2Me2) ;

(FgMgM ′
g|A|FeMeM ′

e) = 22�eFe;�gFg

∑
q=0;±1

(FgM ′
g1q|FeM ′

e)(FgMg1q|FeMe) : (57)

The right-hand sides of the above equations can also be expressed through the 3 − j symbols by
making use of standard relations between the Clebsch–Gordan coeQcients and the 3 − j symbols,

(FgMg1q|FeMe) = (−1)Fg−1+Me
√

2Fe + 1

(
Fg 1 Fe

Mg q −Me

)
:

Note that in the above formulas the magnetic quantum numbers satisfy the selection rules following
from the properties of the Clebsch–Gordan coeQcients,

Me1 −Me2 = Mg1 −Mg2 ;

Me −M ′
e = Mg −M ′

g :
(58)

The partial spontaneous decay rate from the excited state |�eFe〉 to the ground state |�gFg〉 is

22�eFe;�gFg = Wsp(Fe → Fg) =
4
3

|〈�eFe‖d‖�gFg〉|2!3
eg

(2Fe + 1)˜c3 ; (59)

where 〈�eFe‖d‖�gFg〉 is a reduced dipole matrix element for a hyper%ne structure transition. The
total spontaneous decay rate from the hyper%ne structure state |�eFe〉 to all the hyper%ne states |�gFg〉
belonging to the ground state is

22�eFe = Wsp(Fe) = 2
∑
�gFg

2�eFe;�gFg : (60)

The reduced dipole matrix element 〈�eFe‖d‖�gFg〉 can also be expressed through the reduced dipole
matrix element 〈�e‖d‖�g〉 for the %ne structure transition de%ned by the quantum numbers � ≡ nLSJI
(see, e.g. Edmonds, 1974; Sobelman, 1979). This gives an expression for the spontaneous decay rate
between two hyper%ne structure states as

22�eFe;�gFg = Wsp(Fe → Fg) = (2Je + 1)(2Fg + 1)

{
Je Fe I

Fg Jg 1

}2

Wsp(�g → �e) ;

Wsp(�g → �e) =
4
3

|〈�e‖d‖�g〉|2!3
eg

(2Je + 1)˜c3 ;

where Wsp(�g → �e) is the spontaneous decay rate at the %ne structure transition |�e〉 → |�g〉 and Je
is the quantum number of the atomic momentum for the excited %ne structure state |�e〉.

It is worth noting that the spontaneous relaxation terms entering the semiclassical density matrix
equations are the same in both forms of the density matrix, i.e. the terms 〈k|5�̃|l〉 diEer from terms
〈k|5�|l〉 by the notations for the density matrix only. This is obvious since the interaction of the
atom with a vacuum %eld cannot depend on the form of description of the atomic states.
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Finally, for a moving multilevel atom the complete semiclassical equations for the atomic density
matrix elements �kl in RWA include the dynamic terms entering Eqs. (19) and the spontaneous
decay terms (56),

i˜ d
dt

�kl = −
∑
a;m

(dkm · Ea)�mleikar−i(!a−!km)t +
∑
a;n

(dnl · Ea)�kneikar−i(!a−!nl)t (61)

−
∑
a;m

(dkm · Ea∗)�mle−ikar+i(!a−!mk)t +
∑
a;n

(dnl · Ea∗)�kne−ikar+i(!a−!ln)t

+ i˜〈k|5�|l〉 : (62)

In the above RWA equations the convention used in Eqs. (19) is adopted, all four sums are assumed
to include the terms with positive atomic frequencies only, !pq = (Ep − Eq)=˜¿ 0. Similar equa-
tions written for the density matrix elements �̃kl include additional energy terms (Ek − El)�̃kl as in
Eqs. (17).

3. Dipole radiation forces

3.1. Dipole force on a moving atom

3.1.1. General equation
In the framework of the semiclassical description of atomic dynamics when the photon recoil is

neglected the laser %eld cannot directly inFuence the translational motion of the atom. The %eld
however induces the atomic dipole moment. The interaction of the induced dipole moment with the
gradient of the laser %eld produces according to classical electrodynamics the force on the atom
usually called the dipole radiation force.

For a classically moving atom, the induced atomic dipole moment 〈d〉 is de%ned by a usual
quantum-statistical mean value,

〈d〉 = Tr(�d) ; (63)

where � is the semiclassical atomic density matrix. The atom classically moving in a laser %eld
can thus be considered as a classical point-like particle possessing a dipole moment 〈d〉. The dipole
interaction energy of the atom with a laser %eld is de%ned by a mean value

U = 〈V 〉 = −〈d〉 · E ; (64)

where the induced dipole moment and the %eld are assumed to be taken at the position of the atom
center of mass, 〈d〉= 〈d〉(r; v; t); E=E(r; t), since a classically moving particle has to be considered
to have well-de%ned coordinate r and velocity v. According to a classical meaning of Eq. (64) the
dipole radiation force on the atom is determined by an expression formally identical to the classical
expression for the force on a particle possessing the electric dipole moment (Letokhov and Minogin,
1981; Stenholm, 1986; Minogin and Letokhov, 1987; Cohen-Tannoudji et al., 1992)

F= −∇U = ∇(〈d〉 · E) =
∑

〈di〉∇Ei ; (65)

where index i=x; y; z de%nes the rectangular vector components of the induced atomic dipole moment
and a classical laser %eld.
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Note that when applying formula (65) to any speci%c dipole interaction scheme one has to take
into account two important circumstances. First, the induced dipole moment 〈d〉 entering Eq. (65)
is to be considered as a constant quantity not to be diEerentiated on coordinate. Second, since the
semiclassical atomic density matrix � de%ning the induced dipole moment 〈d〉 is usually considered
in a rotating wave approximation (RWA), the right-hand side of Eq. (65) is also to be calculated
in RWA. The formula (65) generally de%nes the dipole radiation force on the atom as a function
of atom position r and velocity v. The position dependence of the force generally originates from
the position dependence of the %eld, E= E(r; t); and the position dependence of the atomic density
matrix �: The velocity dependence of the force comes from the dependence of the atomic density
matrix on the velocity.

It is also worth noting that the dipole radiation force, as any other force, is a classical concept.
Due to this reason the application of the basic formula (65) to a case of the dipole interaction of a
quantized atom with a classical laser %eld is related to the restrictions under which the atom can be
considered as a classically moving particle possessing a well-de%ned induced dipole moment. For
any dipole interaction scheme two basic physical circumstances limit the use of formula (65). First,
in order for the mean value of the dipole moment 〈d〉 to well characterize the induced atomic dipole
moment, the quantum Fuctuations of the atomic dipole moment should be small compared with its
mean value. Second, in order for the translational motion of the atom to be considered as a classical
one, the quantum Fuctuations of atomic momentum should be small compared to the mean value of
the atomic momentum.

For a simplest model of a two-level atom with allowed dipole transition both the above condi-
tions are satis%ed when the time of the dipole interaction between the atom and a laser %eld, �int,
considerably exceeds the spontaneous decay time �sp:

�int��sp : (66)

Under condition (66) the spontaneous relaxation leads to a fast relaxation of the internal atomic
state to the quasistationary state possessing small Fuctuations in the atomic dipole moment. Si-
multaneously, the quantum Fuctuations in atomic momentum become small since at the interaction
times (66) the atom scatters a large number of photons. For more complicated multilevel interaction
schemes the conditions of a classical motion should be especially investigated for a given scheme.
In particular, when the laser %eld excites the atom from the ground-state sublevels, the ground-state
coherence may have a relaxation time that is of the same order as or even much longer than the
interaction time between the atom and the %eld. In such a case the Fuctuations of the induced atomic
dipole moment can be of the order of the mean value of the atomic dipole moment, and the concept
of the force cannot become valid.

3.1.2. Dissipative and reactive (gradient) forces
In typical experimental situations the laser %eld consists of a number of laser beams. Such a %eld

generally has two characteristic spatial scales. One scale is de%ned by the wavelength # = 2)=k
of the laser beams. The second larger scale, l�#; is de%ned by the radii of the laser beams. In
such a general case the dipole radiation force can be represented as consisting of two parts, the
force associated with the gradient of the phases of the laser beams and the force associated with
the gradient of the laser beam amplitudes. The decomposition of the dipole radiation force over
the above two parts directly follows from general equation (65). In case of %eld (18) composed
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of laser beams, Ea = Ea(r); the gradient in Eq. (65) acts on both the phases kar and amplitudes
Ea(r). This yields gives the dipole radiation force as a sum of two terms, the dissipative and reactive
parts,

F= Fdiss + Freact ;

Fdiss =
∑
a; i

i(ka〈di〉Ea
i (r)e

i(kar−!at) − c:c:) ;

Freact =
∑
a; i

(〈di〉(∇Ea
i (r))e

i(kar−!at) + c:c:) ;

(67)

where index i = x; y; z de%nes the rectangular vector components. In terms of elementary photon
processes the dissipative part of the dipole radiation force, Fdiss; comes basically from the ab-
sorption of photons by the atom, i.e. from the absorption and subsequent spontaneous emission
of photons. This part of the total dipole radiation force is proportional to the photon linear mo-
menta ˜ka and is often called the radiation pressure force. The reactive part of the total force,
Freact ; comes basically from the induced scattering of photons at the atomic dipole transitions.
This part of the dipole radiation force is often called the dipole gradient force or the gradient
force.

3.2. Two-level atom in a laser beam

Before discussing the semiclassical dynamics of multilevel atoms in this subsection we present
basic results on the semiclassical dynamics of a two-level atom interacting with the near resonant
%eld of a laser beam.

When a two-level atom with ground state |g〉 and excited state |e〉 interacts with the %eld of a
monochromatic laser beam de%ned by a unit polarization vector e; an amplitude E0(r); and a wave
vector k (k = !=c),

E= eE0(r) cos(kr− !t) ; (68)

the laser beam induces a mean atomic dipole moment

〈d〉 = Tr(�d) = �ged exp(i!0t) + �egd exp(−i!0t) ; (69)

where the dipole matrix element is assumed to be real, d = deg = dge; and !0 = (Ee − Eg)=˜ is the
atomic transition frequency.

3.2.1. Atomic populations and coherences
The semiclassical atomic density matrix elements for a two-level dipole interaction scheme satisfy

the RWA equations of motion which diEer from Eqs. (54) by a dependence of the Rabi frequency
on the atomic coordinate only, 4(r) = dE0(r)=2˜; where d = d · e is a projection of the dipole
matrix element onto the unit polarization vector e. By a substitution for the oE-diagonal elements
�ge = �ge exp(−i(kr − �t)) these equations can be reduced to the equations which do not include
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“fast” time and position dependence,

d
dt

�ee = i4(r)(�ge − �eg) − 22�ee ;

d
dt

�eg = i4(r)(�gg − �ee) − [2 + i(�− kv)]�eg ;

d
dt

�gg = i4(r)(�eg − �ge) + 22�ee :

(70)

Eqs. (70) jointly with the normalization condition, �gg + �ee = 1; fully de%ne the time evolution
of a classically moving two-level atom. The steady-state solutions to Eqs. (70) de%ne the atomic
populations ng = �gg and ne = �ee and atomic coherences �eg and �ge = �∗

eg as

�ee =
42(r)

22 + 242(r) + (�− kv)2 ;

�gg =
22 + 42(r) + (�− kv)2

22 + 242(r) + (�− kv)2 ;

�eg = − 4(r)(�− kv − i2)
22 + 242(r) + (�− kv)2 :

(71)

3.2.2. Radiation pressure force and gradient force
According to Eq. (69) a mean value of the atomic dipole moment is represented in RWA as

〈d〉 = d(�gee−i(kr−!t) + �egei(kr−!t)) : (72)

The dipole radiation force (65) on a two-level atom in the %eld of a laser beam (68), calculated in
RWA, is represented by a sum of two forces (67), the dissipative force which has a meaning of the
radiation pressure force Frp and the reactive force usually called the gradient force Fgr,

F= Frp + Fgr ;

Frp =
i
2
〈d · e〉kE0(ei(kr−!t) − e−i(kr−!t)) = 2˜k4(r)Im �eg ;

Fgr = 1
2 〈d · e〉(ei(kr−!t) + e−i(kr−!t))∇E0(r) = 2˜(∇4(r))Re�eg ;

(73)

where according to condition (66) the quantity �eg is considered as the steady-state solution (71) of
the density matrix equations.

In the framework of the semiclassical analysis the radiation pressure force Frp originates from the
interaction of an induced atomic dipole moment with the laser %eld varying on space scale #=2)=k:
The gradient force Fgr comes from the interaction of an induced atomic dipole moment with the
%eld varying on space scale l about the size of the laser beam, l � |4=∇4|.

The substitution of Eqs. (71) into Eqs. (73) gives the %nal expressions for the radiation pressure
force and gradient force

Frp = ˜k2 G(r)
1 + G(r) + (�− kv)2=22 ; (74)
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Fig. 2. The velocity dependence of the radiation pressure force Frp=˜k 2 (solid line), gradient force Fgr=˜(−∇G=G)2
(dashed-dotted line), transverse Dxx=˜2k22 (dashed line) and longitudinal Dzz=˜2k22 (dotted line) diEusion coeQcients for
a two-level atom in a laser beam at the detuning � = −52 and saturation parameter G = 1: Note, that quantity −∇G=G
is positive for a laser beam with a maximum intensity near the axis.

Fgr = −1
2
˜(�− kv)

∇G(r)
1 + G(r) + (�− kv)2=22 ; (75)

where

G(r) =
242(r)

22 =
1
2

(
dE0(r)
˜2

)2

=
I(r)
IS

(76)

is a dimensionless saturation parameter, I(r) = (c=8))E2
0(r) is the laser beam intensity at point r,

and IS = ˜2!3
0=6)c

2 is the saturation intensity. The velocity dependences of the forces Frp and Fgr
reFect the nature of a near resonant atom-laser beam interaction exhibiting resonance properties near
velocity vres = �=k (Fig. 2). The directions of the radiation pressure force and the gradient force are
generally diEerent. The radiation pressure force accelerates or decelerates the atom in the direction
of the wave vector k. The direction of the gradient force is de%ned by the gradient of the laser
beam intensity and the value of the diEerence between the detuning � and the Doppler shift kv.

It is worth noting that the explicit expressions for the forces allow one to clarify the conditions
of validity of Eqs. (74) and (75). The necessity of condition (66) is evident from Eqs. (70) which
describe the decay of the atomic functions with characteristic time �sp = 2−1: The second condition
discussed in Section 3.1.1 can be shown to give no additional limitations. According to the minimal
frequency width of the dipole optical resonance, �! ≈ 2; the characteristic variation of atomic
momentum is de%ned by a spontaneous decay rate as �p ≈ M2=k. For a classically moving atom
this quantity must be considered to exceed the quantum Fuctuations of atomic momentum, ˜k�M2=k.
This gives the second condition for the validity of the classical atomic motion

!r =
˜k2

2M
�2 ; (77)



86 S. Chang, V. Minogin / Physics Reports 365 (2002) 65–143

where !r =˜k2=2M is the frequency de%ned by the recoil energy R, !r =R=˜: This second condition
is, however, always satis%ed for allowed dipole transitions (Minogin and Letokhov, 1987), and hence
condition (66) remains the only one needed for the validity of the forces (74) and (75).

The structure of the dipole radiation force on a two-level atom in a laser %eld composed of a
number of the laser beams, including theoretically important standing wave con%guration, can be
found in (Letokhov et al., 1976, 1977; Stenholm et al., 1978; Minogin and Serimaa, 1979; Gordon
and Ashkin, 1980; Minogin and Letokhov, 1987; Minogin and Rozhdestvenskii, 1987).

3.2.3. Optical potential
In applications related to the control of atomic motion, generally both parts of the dipole radiation

force inFuence atomic dynamics. In some cases the action of one part of the total force can be
neglected compared with that of the other part. Deceleration, deFection and laser cooling of atoms
are based on the action of the radiation pressure force while the gradient force usually plays a
negligible role in these processes. On the contrary, the techniques of atom trapping and guiding in
laser %elds and atom optics are based on the action of the gradient force with small contributions
due to the radiation pressure force (Grimm et al., 1999; Balykin et al., 2000). In the latter case the
gradient force at a low atomic velocity can be considered as nearly a potential force (Gordon and
Ashkin, 1980).

At a low atomic velocity the gradient force (75) can be integrated to give a potential energy often
referred to as an optical potential,

Ugr(r) = −
∫ r

−∞
Fgr(v = 0) · dr=

1
2
˜� ln

(
1 +

G(r)
1 + �2=22

)
: (78)

For a focused laser beam possessing a maximum intensity at the center of the beam, in the case of
red detuning, �¡ 0; formula (78) de%nes a potential well. If the laser beam intensity has a minimum
at the center of the beam like the laser mode TEM∗

01 formula (78) de%nes a potential well at blue
detuning, �¿ 0. At large detuning, |�|�2; 4; the potential (78) of the gradient force is reduced to
a simple expression,

Ugr(r) = ˜ 42(r)
�

: (79)

The above equation is useful for practical estimations of the depth U0 of the potential well. In case
of a focused laser beam with maximum intensity at the center the potential well existing at �¡ 0
has the depth U0 = ˜42(0)=|�|: In terms of the quasienergy states (Zel’dovich, 1973) or dressed
states (Cohen-Tannoudji et al., 1992) the last equation de%nes the light shift for the ground state of
a two-level atom.

It is worth noting that a simplest model of a dipole interaction of a two-level atom with an
inhomogeneous light %eld (68) can give useful estimations in many speci%c situations. In particular,
the dipole radiation force on a two-level atom in an evanescent laser wave is also de%ned by the
general equations (73). In this case the forces (74) and (75) have speci%c dependences on atomic
position since the spatial dependence of an evanescent wave %eld diEers from that for a laser beam.
The %eld of the evanescent wave decays fast, on a length scale about wavelength, to the vacuum
region producing accordingly a considerable gradient force on the atom (Cook and Hill, 1982).
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3.3. Multilevel atoms in �+ − �− =eld con=guration

Some multilevel atomic schemes frequently used as model schemes are shown in Fig. 3. All these
schemes refer to the dipole interaction of the multilevel atoms with the laser light which is near
resonant to the atomic transition between two degenerate hyper%ne structure states |�gFg〉 and |�eFe〉.
For such schemes the dynamic terms (21) in the semiclassical density matrix equations include the
dipole matrix elements de%ned with respect to the nondegenerate states |�gFgMg〉 and |�eFeMe〉.
These terms can be evaluated using Eqs. (23) and (24). The spontaneous relaxation terms for the
above schemes have relatively simple structures following from general equations (56),

〈FeM ′
e|5�|FeMe〉 = −22〈FeM ′

e|�|FeMe〉 ;

〈FeMe|5�|FgMg〉 = −2〈FeMe|�|FgMg〉 ;

〈FgM ′
g|5�|FgMg〉 =

∑
MeM ′

e

(FgMgM ′
g|A|FeMeM ′

e)〈FeM ′
e|�|FeMe〉 ;

(80)

where the incoming terms are de%ned by the products of the Clebsch–Gordan coeQcients,

(FgMgM ′
g|A|FeMeM ′

e) = 22
∑

q=0;±1

(FgM ′
g1q|FeM ′

e)(FgMg1q|FeMe) ;

and the magnetic quantum numbers satisfy the rule,

Me −M ′
e = Mg −M ′

g :

In the above equations the spontaneous decay rate from the excited state |�eFe〉 is de%ned by a
standard formula,

22 = Wsp =
4
3
|〈�eFe‖d‖�gFg〉|2!3

0

(2Fe + 1)˜c3 ; (81)

with 〈�eFe‖d‖�gFg〉 being the reduced dipole matrix element for a hyper%ne structure transition and
!0 the atomic transition frequency.

Below we consider some basic examples of the dipole radiation forces on the multilevel atoms
which are assumed to interact with a monochromatic laser %eld composed of two counter-
propagating laser waves chosen for de%niteness as left circularly polarized waves,

E= E1 + E2 ;

E1 = 1
2 E0(e+ei(kz−!t) − e−e−i(kz−!t)); E2 = 1

2 E0(−e+ei(kz+!t) + e−e−i(kz+!t)) ;
(82)

where the spherical unit vectors are de%ned by Eq. (20) and k = !=c is the magnitude of the
wavevector. With respect to the quantization axis Oz the %rst wave in Eq. (82) is a �+ polarized
wave and the second one is a �− polarized wave. The %eld (82) is often referred to as a �+ − �−
laser %eld con%guration.

All the examples presented below are given for practically important atomic schemes with integer
total angular momentum. Everywhere below the detuning is de%ned as for a two-level atom, � =
!− !0, while the Rabi frequency 4 is de%ned separately for every atomic model.
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(a)

(b)

(c)

(d)

Fig. 3. Schemes of a (1+3)-level (a), (3+3)-level (b), (3+5)-level (c), and (5+3)-level atom (d) excited by
counter-propagating circularly polarized laser waves composing a �+ − �− %eld con%guration. Arrows show the
�+ (gM → eM+1) and �− (gM → eM−1) excitation transitions. Numbers show the relative strengths of the dipole
�±-transitions.
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3.3.1. (1+3)-level atom
One of the simplest multilevel schemes describing the interaction of a (1+3)-level atom with a

�+ − �− laser %eld con%guration (82) is shown in Fig. 3a. The model refers to the atom with total
momentum Fg = 0 in the ground state |�g0〉 and total momentum Fe = 1 in the excited state |�e1〉.
For this scheme the basic types of the semiclassical density matrix equations (61) are as follows:

d
dt

�g0g0 = i4(eikz�e−1g0 + e−ikz�e1g0)e
i�t + c:c: + 22(�e−1e−1 + �e0e0 + �e1e1) ;

d
dt

�e−1e−1 = i4e−ikz−i�t�g0e−1 + c:c:− 22�e−1e−1 ;

d
dt

�g0e−1 = −i4eikz+i�t(�g0g0 − �e−1e−1) + i4e−ikz+i�t�e1e−1 − 2�g0e−1 ;

(83)

where the Rabi frequency 4 is de%ned with respect to the transition between the nondegenerate
states |g0〉 and |e1〉,

4 =
〈e1|d+|g0〉E0

2˜ =
〈�e1‖d‖�g0〉E0

2
√

3˜
: (84)

For long interaction times, �int�2−1; the model reduces to a V-type model since any initial population
of the upper state |e0〉 reduces to zero.

Excluding from Eqs. (83) the explicit time and coordinate dependence by evident substitutions,

�g0e−1 = �g0e−1e
ikz+i�t ; �g0e1 = �g0e1e

−ikz+i�t ; �e−1e1 = �e−1e1e
−2ikz ;

and putting the total time derivatives equal to zero, one can %nd the steady-state values for the
quantities �kl and %nd the dipole radiation force according to basic formula (65) as F= Fez,

F = 〈d〉 · 9E=9z = 2˜k4 Im(�g0e−1 − �g0e1) : (85)

The velocity dependence of the dipole radiation force (85) can be understood from an approximate
expression valid to a second order in a small Rabi frequency 4 or a %rst order in a small saturation
parameter G = 242=22,

F = ˜k 2G(L− − L+) ; (86)

where L±=22=(22+(�±kv)2) are the Lorentz factors and v=vz is the velocity projection on Oz axis.
Eq. (86) shows that the velocity dependence of the force comes from two one-photon absorption
processes described by the Lorentz factors L± (Fig. 4). According to the resonance conditions, the
one-photon absorption processes are located near resonant velocities vres = ±�=k. At low optical
saturation, the force is mainly de%ned by the terms which describe an independent excitation of the
atom by two counter-propagating laser waves (82). At higher saturation the force includes additional
terms which describe the cross-saturation of the two optical transitions sharing the common ground
level |g0〉 = |�g0〉. Note, that the condition of validity of force (85) coincides with condition (66)
for a two-level atom.
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Fig. 4. Velocity dependence of the radiation force F=˜k 2 (solid line) and longitudinal diEusion coeQcient Dzz=˜2k22
(dotted line) for a (1+3)-level atom in a �+ − �− laser %eld con%guration at detuning � =−52 and saturation parameter
G = 1.

3.3.2. (3+3)-level atom
In the case of interaction of a (3+3)-level atom with a �+ − �− laser %eld con%guration (Fig.

3b) the structure of the semiclassical density matrix equations (61) can be seen from the example
equations,

d
dt

�g−1g−1 = i4e−ikz+i�t�e0g−1 + c:c: + 2(�e−1e−1 + �e0e0) ;

d
dt

�g−1g1 = i4(e−i�t�g−1e0 + ei�t�e0g1)e
−ikz − 2�e−1e1 ;

d
dt

�g−1e0 = −i4(�g−1g−1 − �e0e0)e
−ikz+i�t + i4eikz+i�t�g−1g1 − 2�g−1e0 ;

(87)

where the Rabi frequency 4 is de%ned with respect to the transition between the states |g0〉
and |e1〉,

4 =
〈e1|d+|g0〉E0

2˜ =
〈�e1‖d‖�g1〉E0

2
√

6˜
: (88)

For long times, �int�2−1; this interaction scheme reduces to a >-type scheme. This happens because
the spontaneous decays are forbidden at the transition |e0〉− |g0〉 and, accordingly, the entire atomic
population %nally goes to three states, |g−1〉; |g1〉 and |e0〉 (Fig. 5). At zero velocity vz = v = 0 the
population of the upper state |e0〉 becomes equal to zero due to the coherent population trapping
eEect (Arimondo and Orriols, 1976; Gray et al., 1978).

The dipole radiation force for this scheme is equal to zero for all velocities. It can be shown
from Eqs. (87) that zero value of the force is closely connected with the equality of the spontaneous
decay rates at neighboring transitions |e0〉 → |g−1〉 and |e0〉 → |g1〉. When the decay rates in a
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Fig. 5. Velocity dependences of the stationary ground-state extreme populations N−1 = �g−1g−1 (dashed line, refers to left
scale) and N1 = �g1g1 (dotted line, refers to left scale) and upper-state central population n0 = �e0e0 (solid line, refers to
right scale) for a (3+3)-level atom in a �+ − �− laser %eld con%guration at detuning � =−202 and saturation parameter
G = 4.

model of a >-type atom are chosen to be nonequal the force becomes diEerent from zero. This last
model is, however, arti%cial for the real atomic schemes.

3.3.3. (3+5)-level atom
A (3+5)-level interaction scheme shown in Fig. 3c represents a special interest since this scheme

illustrates the contributions of the two-photon optical processes in the dipole radiation force on a
simple example. Basic types of the semiclassical density matrix equations (61) for a (3+5)-level
atom interacting with the %eld (82) can be described by the example equations,

d
dt

�g0g0 =
i4√

2
(eikz�e−1g0 + e−ikz�e1g0)e

i�t + c:c: + 2
(
�e−1e−1 +

4
3
�e0e0 + �e1e1

)
;

d
dt

�g−1g1 = i4(ei�t�e−2g1 − e−i�t�g−1e2)e
ikz +

i4√
6

(ei�t�e0g1 − e−i�t�g−1e0)e
−ikz

+ 2

(√
2
3
�e−2e0 + �e−1e1 +

√
2
3
�e0e2

)
;

d
dt

�g1e2 = −i4(�g1g1 − �e2e2)e
−ikz+i�t +

i4√
6
eikz+i�t�e0e2 − 2�g1e2 ; (89)

where the Rabi frequency 4 is de%ned with respect to the most strong dipole transition in the scheme
of Fig. 3c,

4 =
〈e2|d+|g1〉E0

2˜ =
〈�e2‖d‖�g1〉E0

2
√

5˜
: (90)
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For this interaction scheme the explicit time and position dependence can be excluded from the
equations with obvious substitutions:

�g−1g1 = �g−1g1e
−2ikz; �g1e2 = �g1e2e

−ikz+i�t ; : : : : (91)

After that the density matrix equations can be solved for a steady-state case.
The dipole radiation force F=Fez on a (3+5)-level atom is determined by the steady-state density

matrix elements according to Eq. (65),

F = 〈d〉 · 9E=9z

= 2˜k4 Im
[
(�g−1e−2 − �g1e2) +

1√
2
(�g0e−1 − �g0e1) +

1√
6

(�g1e0 − �g−1e0)
]

: (92)

Before discussing the dipole radiation force (92) it is worth noting that the conditions of validity
of the force for a scheme possessing the ground-state sublevels are much stronger than that (66) for
a two-level or a (1+3)-level atom. While the atomic coherence induced by the one-photon processes
decays to a steady state at the spontaneous decay rate 2; the ground-state coherence �g−1g1 decays
to a steady state at the rates of the one-photon processes,

W±
2 =

42

(22 + �2±)
2 ; (93)

where �± = � ± kv and v = vz. At large detunings and small velocities a relatively slow decay of
the ground-state coherence imposes in addition to condition (66) a relatively strong condition on the
interaction time,

�int�
(

�
4

)2

2−1 : (94)

The structure of force (92) under conditions (66) and (94) can be clearly seen from the expression
valid at a low optical saturation, i.e. at small eEective saturation parameters s±,

s± = 42=(22 + �2
±)�1 ; (95)

In this case the radiation force can be shown to be (Chang et al., 1999b):

F = ˜k 2 [(s− − s+)N0 − (2s+ − s−=3)N−

+
1
3

(s− − s+)Re A +
1
32

(s−�− + s+�+) Im A
]

; (96)

where N− =�g−1g−1 ; N0 =�g0g0 ; and N+ =�g1g1 are the populations of the ground-state sublevels and
A = �g−1g1 is the ground-state coherence.

An analytical solution to steady-state equations for the density matrix elements under conditions
(66) and (95) gives the ground-state populations and coherence as

N− =
1

2.̃

(
9 +

3
5

(2

k2v2 + (2

(
13
5

�2

22 − 2
)
− 3(kv

k2v2 + (2

�
2

)
;

N0 =
2

.̃

(
1 +

1
5

(2

k2v2 + (2

(
6
5

�2

22 + 1
))

;
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Fig. 6. Dipole radiation force F=˜k 2 (solid line) and longitudinal diEusion coeQcient Dzz=˜2k22 (dotted line) for a
(3+5)-level atom in a �+ − �− %eld con%guration as functions of velocity v = vz for detuning � = −52 and saturation
parameter G = 1.

N+ =
1

2.̃

(
9 +

3
5

(2

k2v2 + (2

(
13
5

�2

22 − 2
)

+
3(kv

k2v2 + (2

�
2

)
;

A =
3

2.̃

(
k2v2 + (2

((
1 +

1
5

�2

22

)
( + ikv

)
; (97)

where the common denominator is

.̃ = 11 +
1
5

(2

k2v2 + (2

(
51
5

�2

22 − 4
)

: (98)

The last equations show that the force includes the terms coming from both one-photon absorption
(emission) processes and two-photon processes possessing the frequency width

( =
5
12

G2
1 + �2=22 ; (99)

where G is a dimensionless saturation parameter,

G =
242

22 =
1
10

(〈�e2‖d‖�g1〉E0

˜2

)2

: (100)

According to Eqs. (97) the two-photon processes are located at zero velocity (Fig. 6). The substi-
tution of the ground-state populations and ground-state coherence found in a lowest order in small
parameters s± into Eq. (96) gives an explicit expression for the force valid in a low-saturation
limit. For a low-velocity region, kv�2; the force (96) is (Dalibard and Cohen-Tannoudji, 1989;
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Fig. 7. Radiation force F (solid line), the incoherent part Fin of the force (dashed line) and coherent part Fc of the force
(dotted line) for a (3+5)-level atom interacting with a �+ − �− %eld con%guration as functions of velocity v = vz for the
detuning � = −32 and saturation parameter G = 1.

Chang et al., 1999a, b):

F =
25
11
˜k 2 G

(1 + �2=22)2

k2v2 + (88=85)(̃2

k2v2 + (̃2

�kv
22 +

5
44
˜k 2 G2

(1 + �2=22)2

�kv
k2v2 + (̃2 ; (101)

where (̃ is an eEective halfwidth of the two-photon resonance perturbed by the one-photon processes,

(̃ =

√
17
33

G2
√

5 + �2=22

4(1 + �2=22)
: (102)

Eq. (101) directly shows that in a low-velocity region the force includes two diEerent parts
(Fig. 7). The %rst part of force (101) comes mainly due to the contribution of the incoherent
one-photon absorption (emission) processes slightly perturbed by the two-photon coherent processes.
This incoherent part of the force, Fin, has the same physical origin as the force on a (1 + 3)-level
atom in the %eld of two counter-propagating waves (see Eq. (86)). At large detunings, |�|& 2�(̃;
the velocity dependence of the incoherent part of the force is a broad one since the one-photon
absorption (emission) resonances are centered at the resonance velocities kvres = ±�: The second
coherent part of the force, Fc, that includes the dependence on the square of the laser %eld intensity,
is due to the two-photon resonance processes broadened by the one-photon processes. This part of
the force is located near zero velocity in the velocity region |v| . (̃=k. Other functions describing
the internal state of the atom show similar behavior. In particular, two photon processes perturbed by
single-photon absorption (emission) processes are responsible for sharp variations of the ground-state
populations near zero velocity (Fig. 8).

Qualitative behavior of force (92) and atomic populations at low velocities can be described
by simple physical arguments. The velocity position of the narrow two-photon structures can be
estimated from the energy conservation law. In the atom rest frame the absorption of a photon
from one travelling wave and the emission of a photon into the other travelling wave results in
a two-photon transition between the ground-state sublevels |g−1〉, |g+1〉 that does not change the
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Fig. 8. Ground-state populations N− =�g−1g−1 ; (dashed line), N0 =�g0g0 (solid line), and N+ =�g1g1 (dash-dotted line) for
a (3+5)-level atom in a �+ − �− %eld con%guration as functions of velocity v = vz for detuning � = −32 and saturation
parameter G = 1. The dotted lines show the values of the ground-state populations in a limit of a zero saturation when
N0 = 4=22 and N± = 9=22.

atom energy, (! ± kv) − (! ∓ kv) ≈ 0. The energy conservation law thus shows that two-photon
resonance structure in the force is located at zero velocity, kv ≈ 0: The widths of the narrow
resonance structures can also be estimated from a simple physical argument. For the atom not
perturbed by any external interaction, the decay rate for the ground-state coherence is zero. The
laser %eld connects the ground-state probability amplitudes with upper-state probability amplitudes
through the dipole interaction term ˜4 and accordingly causes the decay rate of the ground-state
coherence to be of the order of the rate of dipole transitions, i.e. of the order of 242=(22 + �2): This
quantity accordingly plays the role of the frequency width ( for two-photon resonance processes as
determined by Eq. (99). When the two-photon processes are perturbed by the one-photon processes
the two-photon structures become broader thus obtaining the %nal width (̃, which at large detuning
is de%ned by the light shift of the ground-state sublevels, (̃ ≈ 42=|�|:

Some other mathematical approaches to the analysis of the above model including computer
simulations can be found in MHlmer, 1991.

3.3.4. (5+3)-level atom
For a (5 + 3)-level atom interacting with the %eld (82) the semiclassical density matrix equations

(61) are illustrated by some basic examples as

d
dt

�g0g0 =
i4√

6
(eikz�e−1g0 + e−ikz�e1g0)e

i�t + c:c: + 2
(

1
5
�e−1e−1 +

4
5
�e0e0 +

1
5
�e1e1

)
;

d
dt

�g−1g1 =
i4√

2
(ei�t�e0g1 − e−i�t�g−1e0)e

−ikz +
3
5
2�e−1e1 ;

d
dt

�e1g0 =
i4√

6
(�g0g0 − �e1e1)e

ikz−i�t + i4
(
�g2g0 −

1√
6
�e1e−1

)
e−ikz−i�t − 2�e1g0 ;

(103)
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Fig. 9. The dipole radiation force F=˜k 2 (solid line) and longitudinal diEusion coeQcient Dzz=˜2k22 (dotted line) for a
(5+3)-level atom in a �+ − �− %eld con%guration as functions of velocity v = vz for detuning � = −52 and saturation
parameter G = 1. The inset shows the structure of the force and the diEusion coeQcient in a small velocity region.

where the Rabi frequency 4 is de%ned with respect to the most strong dipole transition in the scheme
of Fig. 3d,

4 =
〈e−1|d+|g−2〉E0

2˜ =
〈�e1‖d‖�g2〉E0

2
√

5˜
: (104)

For this scheme the dipole radiation force consists of two usual broad resonance structures located
at resonance velocities vres = ±�=k and additional narrow and supernarrow structures near zero
velocity (Fig. 9). The narrow structure in the force reFects the coherent population trapping eEect
in a >-scheme presented by the magnetic sublevels |g−1〉; |g1〉; and |e0〉: The contribution of the
coherent population trapping eEect can be clearly seen in the velocity dependence of the upper-state
populations (Fig. 10). Supernarrow structure comes from the four-photon processes in the M-type
scheme presented by the sublevels |g−2〉; |g0〉; |g2〉; and |e−1〉; |e1〉: This supernarrow structure is
responsible for zero slope of the force at zero velocity. The conditions of validity for the force on
a (5 + 3)-level atom are similar to that for a (3 + 5)-level atom.

3.4. Multilevel atoms in lin⊥lin =eld con=guration

The other important case of a dipole interaction of the multilevel atoms with the laser %eld is the
case of interaction with the %eld composed of two counter-propagating waves linearly polarized along
orthogonal directions (Fig. 11a). The electric %eld of this kind known as a lin⊥lin con%guration can
be represented as

E= exE0 cos(kz − !t) + eyE0 cos(kz + !t) : (105)
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Fig. 10. Stationary upper-state populations n0 =�e0e0 (solid line), n−1 =�e−1e−1 (dashed line), and n1 =�e1e1 (dotted line)
for a (5+3)-level atom in a �+ − �− laser %eld con%guration at detuning � = −52 and saturation parameter G = 1.

By decomposing the Cartesian unit vectors ex and ey over the spherical unit vectors (20) one
can equivalently represent the electric %eld (105) as a superposition of the %elds of two �+ − �−
con%gurations (Fig. 11b),

E= E1� + E2� ;

E1� =
E0

2
√

2
[(−e+ei(kz−!t) + e−e−i(kz−!t)) + i(e+ei(kz+!t) + e−e−i(kz+!t))] ;

E2� =
E0

2
√

2
[i(e+e−i(kz+!t) + e−ei(kz+!t)) + (−e+e−i(kz−!t) + e−ei(kz−!t))] :

(106)

In Eqs. (106) the %rst �+ − �− con%guration includes a �+-polarized wave propagating along Oz
axis in the positive direction and a �−-polarized wave propagating in the negative direction. The
second �+−�− con%guration includes a �+-polarized wave propagating along Oz axis in the negative
direction and a �−-polarized wave propagating in the positive direction (Fig. 11b). At the origin of
the reference frame, z = 0; the %elds E1� and E2� are shifted in phase )=2.

Below two examples of the multilevel dipole interaction schemes which include the %eld in the
form of a lin⊥lin con%guration, a (3 + 3)-level scheme and a (3 + 5)-level scheme are considered.

3.4.1. (3+3)-level atom
In the case of interaction of a (3 + 3)-level atom with a lin⊥lin %eld con%guration (106) (Fig.

11c) the semiclassical density matrix equations (61) written in RWA are similar to Eqs. (87). Some
basic example equations for this scheme are

d
dt

�g−1g−1 = 4(eikz − ie−ikz)ei�t�e0g−1 + c:c: + 2(�e−1e−1 + �e0e0) ;
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(a) (b)

(c)

(d)

Fig. 11. Two counter-propagating linearly polarized laser waves comprising a lin⊥lin %eld con%guration (a), decomposition
of linearly polarized waves over four circularly polarized waves (b), scheme of transitions in a (3+3)-level atom interacting
with a lin⊥lin %eld con%guration (c), and scheme of transitions in a (3+5)-level atom interacting with a lin⊥lin %eld
con%guration (d).
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Fig. 12. Velocity dependences of the stationary ground-state extreme populations N−1 = �g−1g−1 (dashed line, refers to
left scale) and N1 = �g1g1 (dotted line, refers to left scale) and upper-state central population n0 = �e0e0 (solid line, refers
to right scale) for a (3+3)-level atom in a lin⊥lin laser %eld con%guration at detuning �=−202 and saturation parameter
G = 4.

d
dt

�g−1g1 = 4(eikz − ie−ikz)ei�t�e0g1 − 4(e−ikz − ieikz)e−i�t�g−1e0 − 2�e−1e1 ;

d
dt

�g−1e0 = 4(eikz − ie−ikz)ei�t(�e0e0 − �g−1g−1) + 4(eikz + ie−ikz)ei�t�g−1g1 − 2�g−1e0 ;

where the Rabi frequency 4 is de%ned by an equation similar to Eq. (88),

4 =
〈�e1‖d‖�g1〉E0

2
√

12˜
:

For long interaction times, �int�2−1; this scheme reduces to a >-type scheme which exhibits the
coherent population trapping eEect at zero velocity (Fig. 12). The dipole radiation force for this
scheme is equal to zero for any velocities due to the same reason as in the case of a �+ − �−
con%guration (see Section 3.3.2).

3.4.2. (3+5)-level atom
For the case of interaction of a (3 + 5)-level atom with a lin⊥lin con%guration (Fig. 11d) basic

types of the semiclassical atomic density matrix equations (61) are as follows:

d
dt

�g0g0 =
i4√

2
(�e−1g0e

−ikz − i�e−1g0e
ikz)ei�t − i4√

2
(�e1g0e

−ikz + i�e1g0e
ikz)ei�t + c:c:

+ 2
(
�e−1e−1 +

4
3
�e0e0 + �e1e1

)
;
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d
dt

�g−1g1 = i4(�e−2g1e
−ikz − i�e−2g1e

ikz)ei�t − i4√
6

(�e0g1e
−ikz + i�e0g1e

ikz)ei�t

− i4√
6

(�g−1e0e
ikz + i�g−1e0e

−ikz)e−i�t + i4(�g−1e2e
ikz − i�g−1e2e

−ikz)e−i�t

+ 2

(√
2
3
�e−2e0 + �e−1e1 +

√
2
3
�e0e2

)
;

d
dt

�g1e2 =
i4√

6
(�e0e2e

−ikz − i�e0e2e
ikz)ei�t − i4(�e2e2e

−ikz + i�e2e2e
ikz)ei�t

+ i4(�g1g1e
−ikz + i�g1g1e

ikz)ei�t − 2�g1e2 ;

where the Rabi frequency is de%ned as

4 =
〈e2|d+|g1〉E0

2
√

2˜
=

〈�e2‖d‖�g1〉E0

2
√

10˜
: (107)

In a set of equations describing the interaction of a (3 + 5)-level atom with a lin⊥lin con%gura-
tion only an explicit time dependence can be excluded by simple substitutions for the oE-diagonal
elements,

�g�eB = �g�eBe
i�t ; (108)

while the elimination of an explicit position dependence can be done by decomposing the density
matrix elements into in%nite series,

�g�gB = R0
g�gB + R−2

g�gBe
−2ikz + R2

g�gBe
2ikz + · · · ;

�e�eB = R0
e�eB + R−2

e�eBe
−2ikz + R2

e�eBe
2ikz + · · · ;

�g�eB = S−1
g�eBe

−ikz + S1
g�eBe

ikz + · · · :

(109)

The above decompositions show that the multiphoton processes play an important role in the inter-
action of a (3 + 5)-level atom with a lin⊥lin con%guration. Identi%cation of the processes follows
most clearly from the equations considered to diEerent orders of the rate equation approximation
(REA). As usual, calculation of atomic functions to the 2nth order REA implies that the ground and
upper-state populations and coherences are calculated to 2nth order while the optical coherences to
(2n − 1)th order. Considering atomic populations and coherences to second order REA, one takes
into account the direct one-photon and two-photon processes and stepwise processes composed of
the direct processes. When atomic functions are considered to fourth order REA one takes into ac-
count the direct one-, two-, three- and four-photon processes and stepwise processes composed of
the above direct processes.

The multiphoton processes considerably modify the optical coherences and accordingly the dipole
radiation force which is de%ned according to Eqs. (65) and (109) by a series representation
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Fig. 13. Spatially averaged dipole radiation force F0=˜k 2 (solid line) and longitudinal diEusion coeQcient D0
zz=˜2k22

(dotted line) for a (3+5)-level atom in a lin⊥lin %eld con%guration as functions of velocity v = vz for detuning � = −52
and saturation parameter G = 1.

(Chang et al., 2000),

F = ˜k4
∑

n=0;±2;:::

fneinkz ;

fn = Sn−1
e2g1

+ Sn−1
e−2g−1

− iSn−1
g1e2

+ iSn−1
g−1e−2

+ Sn+1
g1e2

+ Sn+1
g−1e−2

+ iSn+1
e2g1

− iSn+1
e−2g−1

+
1√
6

(Sn−1
e0g1

+ Sn−1
e0g−1

− iSn−1
g−1e0

+ iSn−1
g1e0

+ Sn+1
g1e0

+ Sn+1
g−1e0

+ iSn+1
e0g−1

− iSn+1
e0g1

)

+
1√
2

(Sn−1
e1g0

+ Sn−1
e−1g0

− iSn−1
g0e1

+ iSn−1
g0e−1

+ Sn+1
g0e1

+ Sn+1
g0e−1

+ iSn+1
e1g0

− iSn+1
e−1g0

) ; (110)

where the harmonics of the force satisfy the “hermiticity” conditions, f∗
n =f−n. The velocity depen-

dence of a zero harmonic of the radiation force (110) shown in Fig. 13 clearly exhibits a narrow
multiphoton structure at zero velocity.

Multiphoton processes speci%c to a lin⊥lin con%guration also considerably modify the velocity
dependence of any atomic function as compared with the case of a �+ − �− con%guration. As an
example Fig. 14 shows zero harmonics of the ground-state populations R0− =R0

g−1g−1
; R0

0 =R0
g0g0

and
R0

+ = R0
g1g1

for a (3+5)-level atom in a lin⊥lin con%guration as functions of atomic velocity. For
comparison, dashed lines in Fig. 14 show the ground-state populations N0 = �g0g0 ; N± = �g±1g±1 for
the case when the atom is excited by the %rst �+−�− %eld con%guration, E1�; de%ned by Eq. (106).
Note that in the last case the density matrix elements �kl are de%ned by the equations which diEer
from Eqs. (89) by the interchange of the %eld (82) by the %eld E1�. As can be seen from Fig.
14, atomic populations for a lin⊥lin %eld con%guration include narrow resonance structures of two
types, narrow and super-narrow structures located at zero velocity. Narrow structures are similar to
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Fig. 14. Spatially averaged ground-state atomic populations R0
−; R0

0 and R0
+ for a (3+5)-level atom in a lin⊥lin %eld

con%guration (solid lines) and ground-state populations N−, N0 and N+ for a (3+5)-level atom in the %rst �+ − �−

con%guration (dashed lines) as functions of velocity v = vz for saturation parameter G = 2 and detuning � = −202.

those for the case of a �+ − �− con%guration while super-narrow structures are features speci%c to
a lin⊥lin con%guration.

Solutions to the equations to diEerent orders in series expansion (109) show that the super-narrow
velocity structures appear in atomic populations already in second order REA while narrow velocity
structures appear in fourth order REA only. The absence of the narrow structures in the atomic
populations derived to second order REA shows that direct two-photon processes caused separately
by two �+ − �− con%gurations cancel each other. The super-narrow structures presented by second
order REA are thus caused by the stepwise four-order process composed of the two-photon processes.
In the fourth order REA a large number of the even-order processes jointly produce the narrow
structures similar to that for a single �+ − �− con%guration.

It is instructive to compare the structure of the spatially averaged force for a lin⊥lin con%guration
with the force for a single �+ − �− con%guration. In a low-velocity region and at large detunings
the spatially averaged force (110) for a lin⊥lin con%guration (105) can be expressed through the
ground-state populations and coherences as

F0 = 2˜k 2 42

�2 Re
[
5�
32

(R+2
+ − R+2

− ) − 2�
32

(A2 − A−2) − 4
3
A0

]
; (111)

where Rn±=Rn
g±1g±1

and An =Rn
g−1g1

. In the same low-velocity large-detuning approximation the force
for a single �+ − �− con%guration (82) is (Chang et al., 1999b):

F = 2˜k 2 42

�2

[
2(N+ − N−) +

1
3

(N− − N+) +
2
3

�
2

Im A
]

; (112)
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Fig. 15. Spatially averaged radiation force F0=˜k 2 (solid line) on a (3+5)-level atom in a lin⊥lin con%guration and
radiation force F=˜k 2 on a (3+5)-level atom (dashed line) for the %rst �+ − �− con%guration as functions of velocity
v = vz for the same parameters as in Fig. 14.

where spatially uniform populations N± = �g±1g±1 , N0 = �g0g0 and ground-state coherence A = �g−1g1

are de%ned by Eqs. (89) and (91). Note that the Rabi frequency 4 entering Eqs. (111) and (112) is
speci%ed by Eq. (107). The above equations show that while the force F for a �+−�− con%guration
includes a single two-photon structure related to a single spatially uniform ground-state coherence A,
the force F0 for a lin⊥lin con%guration includes the structures related to both the spatially uniform
coherence A0 and the second harmonics A±2 of the ground-state coherence. Analytical solutions
show speci%cally that the spatially uniform coherence A0 produces the narrow structure and the
second harmonics R±2

± ; A±2 of the ground-state population and coherence produce the super-narrow
structures in the force (111). Fig. 16 shows the velocity dependence of a zero harmonic of the
dipole radiation force on a (3+5)-level atom in a lin⊥lin con%guration in comparison with that of
the force for a single �+ − �− con%guration. As can be seen from Fig. 15 even-order multiphoton
processes considerably increase the slope of the force at zero velocity thus producing higher friction
coeQcient as compared with that for a single �+ − �− con%guration.

For a motionless or suQciently slowly moving atom important features of atomic dynamics are
related to the spatial variation of the radiation force. For spatially periodic laser %eld (105) with
intensity

I = I0(1 + cos 2kz cos 2!t)

the force at zero velocity, F(z; 0); is also a periodic function of atomic position. The periodic force
accordingly produces a periodic potential for a slowly moving atom,

U = U (z) = −
∫ z

0
F(z; 0) dz :

For a multilevel atom, the spatial periods of the atomic functions are generally diEerent from the
period of the %eld intensity due to the contributions of the multiphoton processes. In particular, for
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Fig. 16. Dipole radiation force F=˜k 2 (solid line), potential U (dashed line), and diEusion coeQcient 0:1Dzz=˜2k22 (dotted
line) for a motionless (3+5)-level atom in a lin⊥lin %eld con%guration as functions of position for detuning � = −2
and saturation parameter G = 1. All functions are calculated in 4th order REA. Small negative values of the diEusion
coeQcient are caused by insuQcient accuracy of the 4th order REA. For comparison, the dashed-dotted line shows the
intensity of the lin⊥lin %eld, 0:1I=I0; as a function of position at time t = 0.

a (3+5)-level atom the period of the %eld intensity is Vz = )=k = #=2 while the period of the force
F(z; 0) and potential U (z) is #=4 (Fig. 16).

Periodic potentials produced by the radiation forces nowadays %nd applications for creating pe-
riodic lattices of trapped atoms called optical lattices (Jessen and Deutsch, 1996). Some examples
of the forces on the multilevel atoms in spatially periodic laser %elds and corresponding periodic
potentials are discussed in Nienhuis et al. (1991) and Prudnikov et al. (1999).

4. Quantum-kinetic equations

The semiclassical approach considered in Sections 2 and 3 gives a classical description of trans-
lational atomic dynamics in laser %elds. In some cases the classical approach to atomic dynamics
is insuQcient since it does not take into account the quantum-mechanical exchange of momen-
tum between the atomic wave packet and the laser and vacuum %elds. In order to include into
consideration the momentum exchange one has to consider a fully quantum-mechanical descrip-
tion of both the internal and translational atomic state. A proper generalization of the semiclassical
density matrix equations to a fully quantum case is given by the quantum-kinetic equations
for the atomic density matrix. Similar to semiclassical equations the quantum-kinetic equations
include two basic parts, the dynamic and stochastic part. The dynamic part describes pure quantum-
mechanical time evolution of the atom in a laser %eld. The stochastic part describes the inFu-
ence of a vacuum photon %eld on atomic dynamics. The dynamic part of the quantum-kinetic
equations can be derived straightforwardly from the SchrGodinger equation describing the dipole
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interaction of the atomic wave packet with the laser %eld. The stochastic terms entering the quantum-
kinetic equations can be derived by applying the Weisskopf–Wigner procedure to a whole system
“atomic wave packet+laser %eld+quantized vacuum %eld”. Below we describe the basic
steps leading to the quantum-kinetic equations and discuss the structure of the equations.
General equations of this section are speci%ed in Section 5 for some basic interaction
schemes.

4.1. Coordinate representation

An atomic wave packet interacting with the laser %eld can be considered as a quantum-
mechanical system that consists of two subsystems. One subsystem includes a set of coordinates
�= �1; : : : ; �n which describe the internal atomic motion, i.e. the motion of the electrons in the atom
and the motion of nucleus. The second subsystem includes the variable of atomic coordinate r that
describes the motion of the atomic wave packet in space. When the interaction of the atom with a
vacuum %eld is neglected the time evolution of the atomic wave packet is described by the wave
function �(r; �; t): Atomic wave function �(r; �; t) describes both the internal atomic motion and the
translational motion of the atomic wave packet and thus depends on both the internal coordinates �
and the “external” coordinate r. The Hamiltonian describing the time evolution of the atom in the
laser %eld is generally a function of both the center-of-mass coordinate r and the internal coordinates
�, H = H (r; �).

When interaction with a vacuum %eld is neglected, the atomic density matrix function � in the
coordinate representation is de%ned by a product of the wave function �(r; �; t) and the complex
conjugate wave function �∗(r′; �′; t) taken at two diEerent sets of atomic coordinates, r; � and r′; �′,

� = �(r; �; r′; �′; t) = �(r; �; t)�∗(r′; �′; t) : (113)

Eq. (113) generalizes the de%nition of the semiclassical density matrix function given by Eq. (5).
The atomic density matrix function satis%es the Hermiticity condition

�∗(r; �; r′; �′; t) = �(r′; �′; r; �; t) (114)

and the normalization condition following from the normalization condition for the atomic wave
function,∫

�(r; �; r′; �′; t)
r′=r
�′=�

d3r d3� = 1 : (115)

The equation of motion for the atomic density matrix function �(r; �; r′; �′; t) in the absence of the
spontaneous emission follows from the SchrGodinger equation. Taking into account the fact that the
equation of motion for the atomic density matrix function generally includes the contributions coming
from the interaction with a vacuum %eld here we write out an equation for the function � adding
an implicit operator term 5� describing the eEect of the spontaneous relaxation,

i˜ 99t �(r; �; r′; �′; t) = H (r; �)�(r; �; r′; �′; t) − H ∗(r′; �′)�(r; �; r′; �′; t) + i˜5�(r; �; r′; �′; t) :

(116)
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In problems related to atomic dynamics in laser %elds the Hamiltonian H (r; �) usually includes
three terms, a proper atomic Hamiltonian Ha(�) that describes the quantized internal atomic states,
the kinetic energy operator K(r) = −(˜2=2M)�r, and the dipole interaction operator V (r; �; t) =
−d(�) · E(r; t),

H (r; �) = Ha(�) + K(r) + V (r; �; t) : (117)

In the interaction representation (2), the decomposition of the total atomic wave function over the
stationary time-dependent eigenfunctions (2) is given by

�(r; �; t) =
∑

ak(r)�k(�; t) ; (118)

and the atomic density matrix function in the form of decomposition is as follows:

�(r; �; r′; �′; t) =
∑
m;n

�mn(r; r′)�m(�; t)�∗
n(�

′; t) ; (119)

where the density matrix elements are

�mn(r; r′) = am(r)a∗n(r
′) : (120)

Note that the time argument of the density matrix elements is omitted for shortness.
The equations of motion for the atomic density matrix elements are as follows:

i˜ 99t �kl(r; r′) =− ˜2

2M
(�r −�r′)�kl(r; r′) +

∑
m

Vkm(r; t)�ml(r; r′)

−
∑
n

�kn(r; r′)Vnl(r′; t) + i˜〈k|5�(r; r′)|l〉 ; (121)

where the last implicit term describes as before the contribution of the spontaneous relaxation. Note
also that the Laplace operators �r = ∇2

r and �r′ = ∇2
r′ act accordingly on coordinates r and r′: In

the above equations the matrix elements of the interaction operator V (r; �) are de%ned with respect
to the time-dependent eigenfunctions,

Vkl(r; t) =
∫

�∗
k (�; t)V (r; �)�l(�; t) d3� = Vkl(r)ei!klt ; (122)

Vkl(r) = 〈k|V (r)|l〉 =
∫

 ∗
k (�)V (r; �) l(�) d3� ; (123)

where quantities !kl = (Ek − El)=˜ may have any sign.
When the atomic wave function is decomposed over the time-independent eigenfunctions  k(�);

�(r; �; t) =
∑

ãk(r) k(�) ; (124)

with ãk(r) = ak(r)exp(−iEkt=˜); the decomposition of the density matrix function has the form of
Eq. (13),

�(r; �; r′; �′; t) =
∑
m;n

�̃mn(r; r
′) m(�) ∗

n (�
′) : (125)
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The density matrix elements �̃mn are

�̃mn(r; r
′) = ãm(r)ã∗n(r

′) (126)

and related to density matrix elements de%ned before as

�̃mn(r; r
′) = �mn(r; r′) e−i!mnt : (127)

The equations of motion for the density matrix elements �̃mn explicitly include the energy terms,

i˜ 99t �̃kl(r; r
′) =− ˜2

2M
(�r −�r′)�̃kl(r; r

′) + (Ek(r) − El(r′))�̃kl(r; r
′)

+
∑
m

Vkm(r)�̃ml(r; r
′) −

∑
n

�̃kn(r; r
′)Vnl(r′) + i˜〈k|5�̃(r; r′)|l〉 ; (128)

where the matrix elements of the interaction operator are de%ned with respect to the time-
independent eigenfunctions according to Eq. (123). The use of the density matrix elements �̃mn
may have an advantage in cases when the atomic energies depend on the position of the atom in
an external %eld, En = En(r); i.e. when a proper atomic Hamiltonian parametrically depends on the
atomic center-of-mass coordinate, Ha(r; �).

4.2. Wigner representation

Along with the coordinate representation the density matrix may also be considered in the momen-
tum representation and in the mixed coordinate-momentum or the Wigner representation (Wigner,
1932; Tatarskii, 1983; Hillery et al., 1984; Balazs and Jennings, 1984). In applications related with
the control of the atomic motion by laser %elds the most useful is the Wigner representation.

The Wigner representation considers the atomic density matrix as a function of variables of atomic
position r and momentum p. The Wigner representation can be introduced through the coordinate
representation with the use of the Fourier transform as

�(r; p) = (2)˜)−3=2
∫

�
(
r+

1
2
s; r− 1

2
s
)

e−ips=˜ d3s : (129)

The inverse Fourier transformation is

�
(
r+

1
2
s; r− 1

2
s
)

= (2)˜)−3=2
∫

�(r; p)eips=˜ d3p : (130)

The normalization condition for the Wigner density matrix �(r; p) follows from the normalization
condition (115)∫

w(r; p) d3r d3p = 1 ; (131)

where the quasiprobability distribution function w(r; p) =
∑

�kk(r; p) is called the Wigner function.
In order to transform Eqs. (121) and (128) to the Wigner representation one has to represent the

interaction terms (122) and (123) in the form of the Fourier expansion,

Vkl(r; t) = (2))−3=2
∫

Vkl(q; t)eiqr d3q ; (132)
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Vkl(r) = (2))−3=2
∫

Vkl(q)eiqr d3q : (133)

The substitution of the above Fourier expansions into Eqs. (121) and (128) then gives the equations
for the Wigner density matrix elements �kl(r; p) and �̃kl(r; p).

4.2.1. Dynamic terms
When the atomic density matrix is de%ned with respect to the time-dependent atomic eigenfunctions

the transformation of Eqs. (121) with the use of Eqs. (129) and (130) gives the equations of motion
for the atomic density matrix elements in the Wigner representation as,

i˜ d
dt

�kl(r; p) = (2))−3=2
∑
m

∫
Vkm(q; t)�ml

(
r; p− 1

2
˜q
)

eiqr d3q

−(2))−3=2
∑
n

∫
�kn

(
r; p+

1
2
˜q
)
Vnl(q; t)eiqr d3q + i˜〈k|5�(r; p)|l〉 ; (134)

where the total time derivative

d
dt

=
9
9t + v

9
9r ; v = p=M ; (135)

formally coincides with a classical total time derivative de%ned by Eq. (15). The dipole interaction
terms in the above equations are de%ned by the Fourier expansions,

Vkl(q; t) = (2))−3=2
∫

Vkl(r; t) e−iqr d3r : (136)

When the multilevel atom interacts with the laser %eld (18) composed of the monochromatic plane
waves the equations of motion for the Wigner atomic density matrix elements in the RWA can be
written as,

i˜ d
dt

�kl(r; p) =−
∑
a;m

(dkm · Ea)�ml

(
r; p− 1

2
˜ka

)
eikar−i(!a−!km)t

+
∑
a;n

(dnl · Ea)�kn

(
r; p+

1
2
˜ka

)
eikar−i(!a−!nl)t

−
∑
a;m

(dkm · Ea∗)�ml

(
r; p+

1
2
˜ka

)
e−ikar+i(!a−!mk)t

+
∑
a;n

(dnl · Ea∗)�kn

(
r; p− 1

2
˜ka

)
e−ikar+i(!a−!ln)t + i˜〈k|5�(r; p)|l〉 ; (137)

where all four sums are assumed to include the terms with positive atomic transition frequencies
only, !pq=(Ep−Eq)=˜¿ 0. The above RWA equations generalize the semiclassical RWA equations
(19) and (61).
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When the atomic density matrix is de%ned with respect to the time-independent atomic eigenfunc-
tions the transformation of Eqs. (128) to the Wigner representation gives the equations:

i˜ d
dt

�̃kl(r; p) = (2))−3
∫ [

Ek

(
r+

1
2
s
)
− El

(
r− 1

2
s
)]

�̃kl(r; p+ ˜q)eiqs d3s d3q

+(2))−3=2
∑
m

∫
Vkm(q)�̃ml

(
r; p− 1

2
˜q
)

eiqr d3q

− (2))−3=2
∑
n

∫
�̃kn

(
r; p+

1
2
˜q
)

Vnl(q)eiqr d3q + i˜〈k|5�̃(r; p)|l〉 ; (138)

where

Vkl(q) = (2))−3=2
∫

Vkl(r) e−iqr d3r : (139)

The above equations diEer from Eqs. (134) by the additional energy terms. The internal atomic ener-
gies Ek may depend on atomic position r if a proper atomic Hamiltonian includes the center-of-mass
coordinate dependence, Ha = Ha(r; �).

For a practically important case when the multilevel atom interacts with %eld (18) composed of
the monochromatic plane waves Eqs. (138) can be written in the RWA as,

i˜ d
dt

�̃kl(r; p) = (2))−3
∫ [

Ek

(
r+

1
2
s
)
− El

(
r− 1

2
s
)]

�̃kl (r; p+ ˜q) eiqs d3s d3q

−
∑
a;m

(dkm · Ea)�̃ml

(
r; p− 1

2
˜ka

)
eikar−i!at

+
∑
a;n

(dnl · Ea)�̃kn

(
r; p+

1
2
˜ka

)
eikar−i!at

−
∑
a;m

(dkm · Ea∗)�̃ml

(
r; p+

1
2
˜ka

)
e−ikar+i!at

+
∑
a;n

(dnl · Ea∗)�̃kn

(
r; p− 1

2
˜ka

)
e−ikar+i!at + i˜〈k|5�̃(r; p)|l〉 ; (140)

where the %rst sum includes the terms with the atomic transition frequencies !km =(Ek −Em)=˜¿ 0;
the second sum includes the terms with frequencies !nl = (En − El)=˜¿ 0; the third sum includes
the terms with frequencies !mk = (Em − Ek)=˜¿ 0; and the fourth sum includes the terms with
frequencies !ln = (El − En)=˜¿ 0: The representation of the atomic density matrix elements in the
form of �̃kl is used in Section 7 for the description of atomic dynamics in a magneto-optical trap.

4.2.2. Spontaneous decay terms
For any speci%c dipole interaction scheme the general form of the atomic density matrix equations

(134) or (138) should be speci%ed with the explicit spontaneous relaxation terms. The derivation of
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the relaxation terms for the Wigner density matrix can be done according to the Weisskopf–Wigner
procedure described in Section 2.3. For a suQciently general dipole interaction scheme that includes
the hyper%ne structure ground-state magnetic sublevels |�gFgMg〉 and the excited-state magnetic
sublevels |�eFeMe〉 shown in Fig. 1 the terms (5�)kl = 〈k|5�(r; p; t)|l〉 describing the spontaneous
relaxation are:

〈�e1Fe1Me1 |5�|�e2Fe2Me2〉 = −(2�e1Fe1
+ 2�e2Fe2

)〈�e1Fe1Me1 |�|�e2Fe2Me2〉 ;

〈�eFeMe|5�|�gFgMg〉 = −2�eFe〈�eFeMe|�|�gFgMg〉 ;

〈�g1Fg1Mg1 |5�|�g2Fg2Mg2〉=
∑

�e1 ;�e2 ;Fe1 ;Fe2 ;Me1 ;Me2

∫
(Fg1Fg2Mg1Mg2 |A(n)|Fe1Fe2Me1Me2)

×〈�e2Fe2Me2 |�(p+ n˜k)|�e1Fe1Me1〉 do ;

〈�gFgM ′
g|5�|�gFgMg〉

=
∑

�eFeMeM ′
e

∫
(FgMgM ′

g|A(n)|FeMeM ′
e)〈�eFeM ′

e|�(p+ n˜k)|�eFeMe〉 do ; (141)

where

(Fg1Fg2Mg1Mg2 |A(n)|Fe1Fe2Me1Me2)

= (2�e1Fe1 ;�g1Fg1
+ 2�e2Fe2 ;�g2Fg2

)
∑

q=0;±1

(Fg1Mg11q |Fe1Me1)(Fg2Mg21q |Fe2Me2)&q(n)

and (FgMgM ′
g|A(n)|FeMeM ′

e) = (FgFgMgM ′
g|A(n)|FeFeMeM ′

e): The functions &q(n) de%ne the proba-
bility of the spontaneous photon emission in the direction of a unit vector n;

&q(n) =

{
3
8) (1 − n2

z); q = 0 ;
3

16) (1 + n2
z); q = ±1 ;

(142)

where nz = cos 0 is the projection of the unit vector n on the quantization axis Oz. The integrals in
Eqs. (141) are assumed to be taken over the solid angle do = sin 0 d0 d’: The rest of the terms in
Eqs. (141) are the same as in Eqs. (56). When the recoil momentum n˜k is neglected the relaxation
terms (141) reduce to the semiclassical expressions (56).

5. Quasiclassical kinetic equations

5.1. Transition to quasiclassical description

In many important problems of atomic dynamics in the laser %elds the characteristic relaxation
times of the atomic density matrix are much less than the observation time �int. Owing to fast
relaxation of the atomic density matrix to a quasistationary state full quantum-kinetic description
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of atomic dynamics can in many cases be reduced to a simpler quasiclassical kinetic description.
From the physical point of view the reduction to a quasiclassical description is possible when the
relaxation times of the internal atomic states are small compared with that of the translational atomic
state. Mathematically, the reduction to the quasiclassical description becomes possible in the cases
when the distribution function describing the translational atomic state evolves adiabatically slow
as compared with the time evolution of the density matrix elements. When atomic dynamics is
described in the Wigner representation the above conditions are satis%ed if the relaxation times of
the Wigner density matrix elements �kl(r; p; t) are short compared with the relaxation time of the
Wigner function

w = w(r; p; t) =
∑

�kk(r; p; t) ; (143)

i.e. when the Wigner function w(r; p; t) evolves adiabatically slow as compared with the evolution
of the partial Wigner functions �kl(r; p; t): The simpli%cation of the initial quantum-kinetic equations
to the quasiclassical equations thus becomes possible under the conditions,

�1
rel; �

2
rel; : : : ;��tr ; (144)

where �nrel are the relaxation times of the atomic density matrix elements and time �tr determines the
characteristic time scale for the variation of atomic position and velocity. For simple dipole interaction
schemes, e.g., for a two-level scheme considered in Section 3.2, the fast relaxation of the internal
atomic states is described by the only relaxation time �rel = �sp � 2−1 while the variation of the
translational motion is de%ned by an inverse value of the recoil frequency, �tr � !−1

r , !r =˜k2=2M .
For more complicated multilevel interaction schemes, e.g., for a (3+5)-level scheme considered in
Section 3.3.3, the density matrix elements possess more than one relaxation time.

A standard procedure of the reduction of the equations for the Wigner atomic density matrix
elements to the equation for the quasiclassical distribution function w(r; p; t) includes generally the
steps which follow the Bogolyubov procedure (Bogolyubov, 1967). In the %rst step an explicit time
and coordinate dependence is excluded from the density matrix equations. Typically this procedure
is related with the substitutions for the oE-diagonal density matrix elements �ab. The substitutions
transform the initial equations to new equations for the diagonal elements �aa and new oE-diagonal
elements �ab where indices a and b may diEer from the atomic state indices k and l. Assuming next
in accordance with the long observation time that the atom scatters many photons, the momentum
width of the atomic density matrix elements can be considered to exceed the photon momentum
˜k: This principal assumption that should be checked later allows one to expand the density matrix
elements in the powers of the photon momentum ˜k. Considering next the expanded equations
in successively increasing orders in the photon momentum ˜k one can conclude that the diagonal
�aa and oE-diagonal �ab density matrix elements are the functionals of the Wigner distribution
function w(r; p; t). This means that at the interaction time longer than the “fast” relaxation times,
t = �int��1

rel; �
2
rel; : : : ; the time dependence of the density matrix elements is de%ned by the time

dependence of the quasiclassical distribution function,

�aa(r; p; t) = �aa(r; p;w(r; p; t)) ;

�ab(r; p; t) = �ab(r; p;w(r; p; t)) :
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The general structure of the functional dependence can be found directly from the structure of the
expanded equations as a series in the momentum derivatives of the distribution function,

�aa =
(
R0

aa +
1
2
˜kR1

aa + · · ·
)

w +
1
2
˜k(Q1

aa + · · ·)9w9p + · · · ;

�ab =
(
S0
ab +

1
2
˜kS1

ab + · · ·
)

w +
1
2
˜k(T1

ab + · · ·)9w9p + · · · ; (145)

where R0
aa; R

1
aa;Q

1
aa; : : : ; S

0
ab; S

1
ab;T

1
ab; : : : are the functions of the atomic momentum p (or atomic veloc-

ity v=p=M) that have to be determined by the solution procedure. In accordance with the de%nition
of the distribution function (143), the unknown “diagonal” atomic functions satisfy the normalization
conditions,∑

R0
aa = 1;

∑
R1

aa = 0;
∑

Q1
aa = 0; : : : : (146)

The above procedure evidently generalizes the semiclassical description of atomic dynamics discussed
in Section 2. The diagonal atomic functions describe the normalized atomic populations Na =R0

aa for
a classically moving atom, while the oE-diagonal functions S0

ab describe the atomic coherences. Rest
functions R1

aa;Q
1
aa; : : : ; S

1
ab;T

1
ab; : : : entering Eqs. (145) jointly with Planck’s constant ˜ contribute to

the shape of the atomic wave packet.
General structure of solution (145) is a key to the derivation of the equation for the leading

function w(r; p; t): Considering the expanded equations in increasing orders in the photon momentum
(in orders in Planck’s constant) and taking into account an explicit structure of the solution (145)
one can derive from the expanded equations the closed equation for the distribution function w =
w(r; p; t). In zero order in the photon momentum the distribution function satis%es the phase density
conservation equation,

9w
9t + v

9w
9r = 0 :

This equation is physically evident as in the absence of the photon recoil the atom moves freely.
When considered to the %rst order in the photon momentum the expanded density matrix equations
reduce to the Liouville equation for the distribution function w,

9w
9t + v

9w
9r = − 9

9pz
(Fw) ; (147)

where the %rst kinetic coeQcient F de%nes the dipole radiation force already found by the semiclas-
sical approach (see Eq. (65)). To %nd the rest of the atomic functions to the %rst order in the photon
momentum one has to take into account the total time derivatives for the functions R0

aa; S0
ab to the

%rst order according to the rule from the functional dependence (145) and the %rst-order kinetic
equation (147),(

9w
9t + v

9w
9r

)
R0

aa = −R0
aaF

9w
9pz

;
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(
9w
9t + v

9w
9r

)
S0
ab = −S0

abF
9w
9pz

:

Considering %nally the expanded equations to the second order in the photon momentum one can
derive a Fokker–Planck type kinetic equation for the distribution function (Minogin, 1980, 1981;
Javanainen, 1991; Berg-SHrensen et al., 1992; Stenholm, 1986),

9w
9t + v

9w
9r = − 9

9p (Fw) +
∑ 92

9p2
i
(Diiw) ; (148)

where the kinetic coeQcients F and Dii de%ne the dipole radiation force and the momentum diEusion
tensor (i = x; y; z). Considerations of the expanded equations to higher-order terms can be shown to
give negligibly small corrections to the second-order Fokker–Planck equation (148).

Eq. (148) is thus a %nal quasiclassical equation for the atomic distribution function w(r; p; t): Note
that in the case of a single atom the quasiclassical distribution function is assumed to be normalized
“per a single atom” according to Eq. (131). Eq. (148) can also be applied to an ensemble of
noninteracting atoms. In that case the distribution function is to be normalized per a total number
of atoms.

5.2. Fokker–Planck equation for two-level atom

To illustrate the procedure of the transition to the quasiclassical description and introduce useful
notations we %rst describe the case of interaction of a two-level atom with a laser beam (68).
For a two-level atom the Wigner quantum-kinetic equations (134) written in the time-dependent
representation and RWA are

d
dt

�ee = i4(r)(�(−)
ge ei(kr−�t) − �(−)

eg e−i(kr−�t)) − 22�ee ;

d
dt

�eg = i4(r)(�(−)
gg − �(+)

ee ) ei(kr−�t) − 2�eg ;

d
dt

�gg = i4(r)(�(+)
eg e−i(kr−�t) − �(+)

ge ei(kr−�t)) + 22〈�(q)
ee 〉 ; (149)

where the Rabi frequency 4 and detuning � are de%ned as in semiclassical equations (54). The
density matrix elements in Eqs. (149) are

�ab = 〈a|�(r; p; t)|b〉; �(±)
ab =

〈
a
∣∣∣∣�
(
r; p± 1

2
˜k
)

; t
∣∣∣∣ b
〉

; �(n)
ab = 〈a|�(r; p+ n˜k; t)|b〉 ;

(150)

where k = kez and n is a unit vector that de%nes the direction of the spontaneous photon emission
according to Eqs. (142). Notation 〈�q

ekel〉 is adopted for the density matrix elements averaged over
the angular distributions of the spontaneous photon emission,

〈�q
ekel〉 =

∫
&q(n)�(n)

ekel do ; (151)
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where do = sin 0 d0 d’: Note that in a two-level interaction model the laser beam is assumed to be
linearly or circularly polarized. In the %rst case q = 0 and in the second case q = ±1.

After substitutions for the oE-diagonal elements �eg=�eg exp(ikr− i�t) and application of the qua-
siclassical transition procedure according to Eqs. (143)–(148) the initial quantum-kinetic equations
(149) are reduced to the Fokker–Planck equation (148). The latter equation includes the radiation
force de%ned by Eqs. (73)–(75) and the momentum diEusion tensor (Minogin and Letokhov, 1987),

Dq
ii =

1
2
˜2k22

G(r)
1 + G(r) + (�− kv)2=22 F

q
ii ;

Fq
ii = �q

ii + �iz

(
1 +

G(r)[(�− kv)2=22 − 3]
[1 + G(r) + (�− kv)2=22]2

)
: (152)

In the above equations the saturation parameter G(r) is de%ned by Eq. (76). The coeQcients �q
ii

de%ne the probabilities of the spontaneous photon emission in the direction i = x; y; z;

�q
ii =

∫
n2
i &q(n) do : (153)

For a laser beam propagating along Oz axis and linearly polarized along Ox axes �)
xx = 1=5; �)

yy =
�)
zz =2=5: For a circularly polarized laser beam propagating along Oz axis ��

xx =��
yy =3=10; ��

zz =2=5.
The velocity dependence of the diEusion coeQcients for a two-level interaction scheme is shown in
Fig. 2 jointly with the velocity dependence of the radiation pressure force and the gradient force.

The diEusion tensor Dq
ii includes two physically diEerent parts. The %rst part of the diEusion

tensor that is proportional to the angular anisotropy coeQcients �q
ii originates from the Fuctuations

in the direction of the spontaneous photon emission. The behavior of this part follows the behavior
of the upper-state population nee =R0

ee: The second part that exists only for the longitudinal diEusion
coeQcient Dq

zz comes from the Fuctuations in the number of laser photons scattered by the atom
(Cook, 1980; Gordon and Ashkin, 1980; Minogin, 1980). The velocity dependence of the second
part exhibits a dip at resonance velocity vres =�=k reFecting the correlations in the process of photon
scattering (Fig. 2).

Note that for practical evaluations based on a two-level model the angular anisotropy coeQcients
can be approximated as �q

xx = �q
yy = �q

zz = 1=3: This approximation corresponds to a hypothetical
isotropic spontaneous emission.

5.3. Fokker–Planck equations for multilevel atoms in �+ − �− =eld con=guration

5.3.1. (1+3)-level atom
In the case of excitation of a (1+3)-level atom by two counter-propagating laser waves de%ned

by Eqs. (82) the dipole interaction is described by a V-type excitation scheme (Fig. 3a). For this
scheme the structure of the quantum-kinetic equations (134) written in an RWA can be illustrated
by some basic equations as,

d
dt

�g0g0 = i4(eikz+i�t�(−)
e−1g0

+ e−ikz+i�t�(+)
e1g0

) + c:c: + 22(〈�−1
e−1e−1

〉 + 〈�0
e0e0

〉 + 〈�1
e1e1

〉) ;
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d
dt

�e−1e−1 = i4e−ikz−i�t�(+)
g0e−1

+ c:c:− 22�e−1e−1 ;

d
dt

�g0e−1 =−i4eikz+i�t(�(−)
g0g0

− �(−)
e−1e−1

) + i4e−ikz+i�t�(+)
e1e−1

− 2�g0e−1 ; (154)

where the Rabi frequency 4 is de%ned by Eq. (84) and the averaging over the spontaneous angular
distribution is de%ned by Eq. (151). The above equations generalize the semiclassical equations (83).
An application of the reduction procedure described in Section 5.1 to set (154) gives the dipole
radiation force and the momentum diEusion tensor which are basically de%ned by the one-photon
absorption (emission) processes. The velocity dependences of the longitudinal diEusion coeQcient
Dzz for a (1+3)-level atom is shown jointly with that of the radiation force in Fig. 4. Similar to the
force the diEusion coeQcient has a relatively simple structure formed basically by the one-photon
resonances centered at resonance velocities vres = ±�=k. Two relatively narrow dips also located at
resonance velocities come from the Fuctuations in the number of the laser photons scattered by the
atom. Each of these two dips is similar to the dip in the diEusion coeQcient for a two-level atom.

At a low optical saturation when the force is de%ned by Eq. (86) the momentum diEusion tensor
calculated also to a second order in a small Rabi frequency 4 (84) is

Dii =
(3 + 11�iz)

20
˜2k22G(L− + L+) : (155)

This simple equation useful for estimations does not describe the velocity dips shown in Fig. 4. The
dips in the longitudinal diEusion coeQcient appear when the equation for Dii is considered up to
the fourth power in the Rabi frequency.

5.3.2. (3+3)-level atom
For a (3+3)-level atom excited by the %eld (82) as shown in Fig. 3b, the force is zero at all

velocities (see Section 3.3.2). The population of the upper state |e0〉 is generally diEerent from
zero. Accordingly, the diEusion tensor is generally also diEerent from zero. For this scheme the
quantum-kinetic equations generalize the semiclassical equations (87) as

d
dt

�g−1g−1 = i4e−ikz+i�t�(+)
e0g−1

+ c:c: + 2(〈�0
e−1e−1

〉 + 〈�1
e0e0

〉) ;

d
dt

�g−1g1 = i4(e−i�t�(−)
g−1e0

+ ei�t�(+)
e0g1

) e−ikz − 2〈�0
e−1e1

〉 ;

d
dt

�g−1e0 = −i4(�(−)
g−1g−1

− �(+)
e0e0

) e−ikz+i�t + i4eikz+i�t�(+)
g−1g1

− 2�g−1e0 : (156)

The velocity dependence of the diEusion coeQcients Dii for a (3+3)-level atom is similar to that of
the upper-state population ne0e0 =R0

e0e0
(see Fig. 5). At zero velocity the upper-state population ne0e0

and accordingly the diEusion coeQcients are equal to zero due to the coherent population trapping
eEect.

5.3.3. (3+5)-level atom
In the case of interaction of a (3+5)-level atom with the laser %eld composed of two counter-propa-

gating circularly polarized waves (82) the interaction scheme is shown in Fig. 3c. For this case basic
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types of quantum-kinetic equations (134) generalizing the semiclassical equations (89) are:

d
dt

�g0g0 =
i4√

2
(eikz�(−)

e−1g0
+ e−ikz�(+)

e1g0
) ei�t + c:c: + 2

(
〈�−1

e−1e−1
〉 +

4
3
〈�0

e0e0
〉 + 〈�1

e1e1
〉
)

;

d
dt

�g−1g1 = i4(ei�t�(−)
e−2g1

− e−i�t�(+)
g−1e2

) eikz +
i4√

6
(ei�t�(+)

e0g1
− e−i�t�(−)

g−1e0
) e−ikz

+ 2

(√
2
3
〈�−1

e−2e0
〉 + 〈�0

e−1e1
〉 +

√
2
3
〈�1

e0e2
〉
)

;

d
dt

�g1e2 = −i4(�(−)
g1g1

− �(+)
e2e2

) e−ikz+i�t +
i4√

6
eikz+i�t�(−)

e0e2
− 2�g1e2 ; (157)

where the Rabi frequency 4 is de%ned by Eq. (90) and the averaging over the spontaneous angular
distribution is de%ned by Eq. (151).

With substitution of Eqs. (91) and application of the procedure of the transition to a quasiclassical
description the initial equations for a (3+5)-level scheme reduce to the Fokker–Planck equation
(148). The latter includes the dipole radiation force F=Fez de%ned by Eq. (92) and the momentum
diEusion tensor Dii;

F = 2˜k4 Im
[
(S0

g−1e−2
− S0

g1e2
) − 1√

2
(S0

g0e1
− S0

g0e−1
) +

1√
6
(S0

g1e0
− S0

g−1e0
)
]
;

Dii = ˜2k22
[
��
ii

(
R0

e−2e−2
+

1
2
R0

e−1e−1
+

1
3
R0

e0e0
+

1
2
R0

e1e1
+ R0

e2e2

)

+ �)
ii

(
1
2
R0

e−1e−1
+

2
3
R0

e0e0
+

1
2
R0

e1e1

)]

+ �iz˜2k24 Im
[
(T 1

g1e2
+ T 1

e−2g−1
) +

1√
2
(T 1

g0e1
+ T 1

e−1g0
) +

1√
6
(T 1

g−1e0
+ T 1

e0g1
)
]
; (158)

where the coeQcients ��
ii, �)

ii are de%ned by Eq. (153).
The kinetic coeQcients F and Dii that govern the time evolution of the distribution function

w(r; p; t) can be explicitly determined by solving the steady-state equations that follow from the
expanded equations for the atomic density matrix elements considered separately in the zeroth and
the %rst order in the photon momentum ˜k: The steady-state equations of the zeroth order in ˜k
that determine the functions R0

aa and S0
ab naturally coincide with the steady-state equations for the

semiclassical density matrix elements �aa and �ab which follow from Eq. (89). The equations for
the functions Q1

aa and T 1
ab follow from the quantum-kinetic equations partly listed in (157) after the

expansion to the %rst order in ˜k (Chang et al., 1999b).
Similar to already considered cases, the diEusion tensor Dii includes two physically diEerent parts.

The %rst part of the diEusion tensor that is proportional to the angular anisotropy coeQcients ��
ii,

�)
ii and the upper-state populations n� = R0

e�e� originates from the Fuctuations in the direction of the
spontaneous photon emission and the second part that is proportional to the optical coherences T 1

g�eB
comes from the Fuctuations in the number of scattered photons.



S. Chang, V. Minogin / Physics Reports 365 (2002) 65–143 117

In a low-saturation and low-velocity approximation when the force is de%ned by Eq. (101) the
longitudinal diEusion coeQcient Dzz = D can be written as,

D = Dsp + Dind ;

Dsp =
1
2
˜2k22

G
(1 + �2=22)

(
�� +

(
�) − 1

4
��

)
N0

)
;

Dind =
1
2
˜2k22

G
(1 + �2=22)

(
4
3
− 13

12
N0 +

5
6
(Q− − Q+) +

i�
62

(�− �∗)
)

; (159)

where Q± = Q1
g±1g±1

; � = T 1
g−1g1

. Similar to the dipole radiation force, the diEusion coeQcient D
includes a narrow two-photon velocity structure located at zero velocity (Fig. 6). This structure can
be shown to decrease the value of the diEusion coeQcient D = Dzz at zero velocity. An analysis
of the expanded equations shows that the two-photon processes give diEerent contributions to the
two parts of the diEusion coeQcient D = Dzz represented by Eq. (159). The two-photon velocity
structure located at zero velocity increases the %rst part of the diEusion coeQcient, Dsp, but much
more decreases the second part of the diEusion coeQcient, Dind. The second part of the diEusion
coeQcient is, however, much bigger than the %rst one since the contribution of the ground state
coherence is directly related to the ground state populations. As a result, the diEusion coeQcient D
manifests a narrow velocity dip at velocity vz = 0:

5.3.4. (5+3)-level atom
For this interaction scheme shown in Fig. 3d the quantum-kinetic equations generalize the semi-

classical equations (103) as

d
dt

�g0g0 =
i4√

6
(eikz�(−)

e−1g0
+ e−ikz�(+)

e1g0
) ei�t + c:c: + 2

(
1
5
〈��

e−1e−1
〉 +

4
5
〈�0

e0e0
〉 +

1
5
〈�1

e1e1
〉
)

;

d
dt

�g−1g1 =
i4√

2
(ei�t�(+)

e0g1
− e−i�t�(−)

g−1e0
) e−ikz +

3
5
2〈�0

e−1e1
〉;

d
dt

�e1g0 =
i4√

6
(�(−)

g0g0
− �(+)

e1e1
) eikz−i�t + i4

(
�(+)
g2g0

− 1√
6
�(−)
e1e−1

)
e−ikz−i�t − 2�e1g0 :

The reduction procedure gives in this case the momentum diEusion coeQcient Dzz shown jointly
with the radiation force in Fig. 9. The diEusion coeQcient Dzz exhibits at zero velocity a narrow
dip going down to zero. This behavior of the diEusion coeQcient naturally reFects the contribution
of the coherent population trapping eEect most clearly seen in a similar behavior of the upper-state
population ne0e0 = R0

e0e0
(Fig. 10).

5.4. Multilevel atoms in lin⊥lin =eld con=guration

5.4.1. (3+3)-level atom
For the case of interaction of a (3+3)-level atom with a lin⊥lin %eld con%guration (106) the

quantum-kinetic equations (134) written in RWA are similar to Eqs. (156). Some example equations
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Fig. 17. The velocity dependence of the longitudinal diEusion coeQcient Dzz=˜2k22 (dotted line) and upper-state population
n0 =�e0e0 (solid line) for a (3+3)-level atom in a lin⊥lin con%guration at the detuning �=−202 and saturation parameter
G = 4.

for this scheme are as follows:

d
dt

�g−1g−1 = 4(eikz�(−)
e0g−1

− ie−ikz�(+)
e0g−1

) ei�t + c:c: + 2(〈�0
e−1e−1

〉 + 〈�1
e0e0

〉);

d
dt

�g−1g1 = 4(eikz�(−)
e0g1

− ie−ikz�(+)
e0g1

) ei�t − 4(e−ikz�(−)
g−1e0

− ieikz�(+)
g−1e0

) e−i�t − 2〈�0
e−1e1

〉 ;

d
dt

�g−1e0 =4eikz+i�t(�(−)
e0e0

− �(+)
g−1g−1

) − i4e−ikz+i�t(�(+)
e0e0

− �(−)
g−1g−1

)

+4(eikz�(+)
g−1g1

+ ie−ikz�(−)
g−1g1

) ei�t − 2�g−1e0 ;

where the Rabi frequency 4 is de%ned by Eq. (88). For interaction times �int�2−1 this model
reduces to a >-type model with zero dipole radiation force. The diEusion tensor is represented by
a Fourier series. Spatially averaged value of the diEusion tensor is similar to that for a (3+3)-level
atom in a �+ − �− laser %eld con%guration (Fig. 17).

5.4.2. (3+5)-level atom
In this case the %eld is represented by Eqs. (105) and (106). The basic types of the Wigner

density matrix equations (134) for a (3+5)-level atom in a lin⊥lin laser %eld con%guration are

d
dt

�g0g0 =
i4√

2
(�(+)

e−1g0
e−ikz − i�(−)

e−1g0
eikz) ei�t − i4√

2
(�(+)

e1g0
e−ikz + i�(−)

e1g0
eikz) ei�t + c:c :

+ 2
(
〈�−1

e−1e−1
〉 +

4
3
〈�0

e0e0
〉 + 〈�1

e1e1
〉
)

;
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d
dt

�g−1g1 = i4(�(+)
e−2g1

e−ikz − i�(−)
e−2g1

eikz) ei�t − i4√
6
(�(+)

e0g1
e−ikz + i�(−)

e0g1
eikz) ei�t

− i4√
6
(�(+)

g−1e0
eikz + i�(−)

g−1e0
e−ikz) e−i�t + i4(�(+)

g−1e2
eikz − i�(−)

g−1e2
e−ikz) e−i�t

+ 2

(√
2
3
〈�−1

e−2e0
〉 + 〈�0

e−1e1
〉 +

√
2
3
〈�1

e0e2
〉
)

;

d
dt

�g1e2 =
i4√

6
(�(+)

e0e2
e−ikz − i�(−)

e0e2
eikz) ei�t − i4(�(+)

e2e2
e−ikz + i�(−)

e2e2
eikz) ei�t

+ i4(�(−)
g1g1

e−ikz + i�(+)
g1g1

eikz) ei�t − 2�g1e2 ; (160)

where the Rabi frequency is de%ned by Eq. (107).
After expansion of the initial equations partially shown in (160) in the photon recoil and elimina-

tion of an explicit time dependence by substitutions (108) for the oE-diagonal elements, the expanded
functions can be decomposed into in%nite series (109). After that the quasiclassical transition pro-
cedure gives the Fokker–Planck equation with the dipole radiation force (110) and the momentum
diEusion tensor

Dii = ˜2k22
∑

n=0;±2;:::

dn
iie

inkz ;

dn
ii = ��

ii

(
rne−2e−2

+
1
2
rne−1e−1

+
1
3
rne0e0

+
1
2
rne1e1

+ rne2e2

)
+ �)

ii

(
1
2
rne−1e−1

+
2
3
rne0e0

+
1
2
rne1e1

)

− 4
2
�iz

[
(Tn−1

e2g1
+ Tn−1

e−2g−1
− iTn−1

g1e2
+ iTn−1

g−1e−2
+ Tn+1

g1e2
+ Tn+1

g−1e−2
+ iTn+1

e2g1
− iTn+1

e−2g−1
)

+
1√
6
(Tn−1

e0g1
+ Tn−1

e0g−1
− iTn−1

g−1e0
+ iTn−1

g1e0
+ Tn+1

g1e0
+ Tn+1

g−1e0
+ iTn+1

e0g−1
− iTn+1

e0g1
)

+
1√
2
(Tn−1

e1g0
+ Tn−1

e−1g0
− iTn−1

g0e1
+ iTn−1

g0e−1
+ Tn+1

g0e1
+ Tn+1

g0e−1
+ iTn+1

e1g0
− iTn+1

e−1g0
)
]
: (161)

The harmonics of the diEusion tensor satisfy the “hermiticity” conditions, dn∗
ii = d−n

ii .
The velocity dependence of the momentum diEusion tensor in a low-velocity region is de%ned

by the even-order multiphoton processes considered in Section 3.4.2. Fig. 19 shows the velocity
dependence of zero harmonics of the dipole radiation force and longitudinal component of the
diEusion tensor for a lin⊥lin con%guration in comparison with the radiation force and longitudinal
component of the diEusion tensor for a single �+ − �− con%guration. As can be seen from Fig. 18
even-order multiphoton processes considerably increase the longitudinal component of the diEusion
tensor since this quantity is the most sensitive to the Fuctuations in the number of scattered photons.
While for a �+ − �− con%guration the longitudinal diEusion coeQcient Dzz even decreases at zero
velocity due to the coherent contribution of a single two-photon process, for a lin⊥lin con%guration
the longitudinal diEusion coeQcient D0

zz=˜2k22d0
zz increases at zero velocity reFecting a considerable
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Fig. 18. Spatially averaged radiation force F0=˜k 2 (solid line) and spatially averaged longitudinal component of the
diEusion tensor 0:1D0

zz=˜2k22 (dotted line) for a (3+5)-level atom in a lin⊥lin con%guration and radiation force F=˜k 2
(dashed line) and longitudinal component of the diEusion tensor Dzz=˜2k22 (dot-dashed line) for a (3+5)-level atom in
the %rst �+ − �− con%guration as functions of velocity v = vz for saturation parameter G = 2 and detuning � = −202.

increase in the number of scattering channels. Note that in Fig. 18 the value of the diEusion coeQcient
for a lin⊥lin con%guration is plotted in 10 times reduced scale.

Note %nally that the coeQcients of the Fokker–Planck equation for the multilevel schemes with
half integer angular momenta Fg = Fe = 1=2 can be found in Prudnikov et al. (1999).

6. Laser cooling of atoms

One of the most important applications of the quasiclassical theory of atomic motion in laser %elds
is the cooling of atoms by near resonant laser %elds (HGansch and Schawlow, 1975; Wineland and
Itano, 1979; Minogin and Letokhov, 1987; Nienhuis et al., 1991; Adams and Riis, 1997; Metcalf
and van der Straten, 1999).

Explicit expressions for the coeQcients of the Fokker–Planck equation for the dipole interaction
schemes which include counter-propagating laser waves can be directly applied for estimating the
temperatures achievable in the schemes of laser cooling of atoms. At a negative detuning when
the dipole radiation force reduces to a friction force, the Fokker–Planck equation has a steady-state
solution describing the stationary velocity distribution of laser-cooled atoms. At low velocities the
friction force is a linear function of velocity and the steady-state solution of the Fokker–Planck
equation is a Maxwellian distribution de%ned by the friction produced by the cooling force and the
diEusion.

In a simplest one-dimensional case the dipole radiation force playing the role of a cooling force
can be represented at low velocities as a friction force

F = −MBv ; (162)
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where B is the friction coeQcient. The steady-state velocity distribution for laser-cooled atoms is
accordingly de%ned by the solution of the Fokker–Planck equation as

w(v) =
1√
)u

exp
(
− v2

u2

)
; (163)

where the velocity halfwidth u is related to an eEective temperature,

u =

√
2kBT
M

; (164)

and kB is the Boltzmann constant. The eEective temperature T is de%ned by the Einstein relation,

T =
D(0)
MBkB

; (165)

where D(0) is the diEusion coeQcient at zero velocity.
The value of atomic temperature (165) crucially depends on the types of optical processes which

contribute to the friction and diEusion coeQcients. Of two coeQcients, B and D(0); most important is
the behavior of the friction coeQcient which is most sensitive to the optical processes. In cases of the
dipole interaction schemes not possessing the ground-state coherence as it is the case for a two-level
atom or a (1+3)-level atom, the friction force originates from the one-photon resonances which are
relatively broad on the velocity scale. The one-photon friction force produces accordingly a relatively
low friction and a relatively high value of the temperature known as the Doppler temperature.
In the cases of the multilevel dipole interaction schemes possessing the ground-state coherence
the two-photon and generally higher-order multiphoton processes considerably increase the friction
coeQcient. As a result the value of temperature for a multilevel scheme can be below the typical
values of the Doppler temperatures. In the latter case the corresponding low temperatures are referred
to as the sub-Doppler temperatures (Dalibard and Cohen-Tannoudji, 1989).

6.1. Doppler cooling

The quantitative estimations of the Doppler temperatures can be directly derived from the Fokker–
Planck equations for a two-level in the %eld of two counter-propagating laser waves or a (1+3)-level
atom in a �+ − �− %eld con%guration. At low saturation the dipole radiation force can be written
for both schemes as (see Eqs. (74) and (86)),

F = ˜k 2G
(

1
1 + (�− kv)2=22 − 1

1 + (� + kv)2=22

)
: (166)

At a red detuning, �¡ 0; the force (166) is directed opposite to atomic velocity. Accordingly, at
low velocity the force (166) reduces to a friction force (162) with the friction coeQcient

B = !r
8G|�|=2

(1 + �2=22)2 ; (167)
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Fig. 19. Atomic temperature for a (1+3)-level atoms in a �+−�− %eld con%guration as a function of detuning at saturation
parameter G = 1 (solid line). The dotted line shows the temperature (169) valid in a low saturation limit. Temperature is
normalized on the Doppler temperature TD = ˜2=kB.

where !r = ˜k2=2M is the recoil frequency. The longitudinal diEusion coeQcient at zero velocity
for both schemes is (see Eqs. (152) and (155))

D(0) = Dzz(0) = ˜2k22
G

1 + �2=22 (1 + �zz) : (168)

The eEective temperature for the Doppler cooling schemes according to Eq. (165) is de%ned by the
value of the detuning and does not depend on the saturation parameter at low eEective saturation
(Letokhov et al., 1977)

T =
1 + �zz

4
˜2
kB

( |�|
2

+
2
|�|
)

: (169)

At an optimal detuning �=−2 the temperature found in a low saturation limit has a minimal value

Tmin =
1 + �zz

2
TD; TD =

˜2
kB

; (170)

where the temperature TD is called the Doppler temperature. Typical dependence of the temperature
on the detuning for a (1+3)-level interaction scheme is shown in Fig. 19.

6.2. Sub-Doppler cooling

6.2.1. �+ − �− laser =eld con=guration
An estimation of the sub-Doppler temperature can be done on a simplest example of a mul-

tilevel atom which possesses the ground-state sublevels—a (3+5)-level atom. In the case of the
one-dimensional laser %eld represented by a �+ − �− con%guration (82) the dipole radiation force
on a (3+5)-level atom at low saturation and low velocities is de%ned by Eq. (101). At large negative
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detunings, |�|�4; 2; the friction coeQcient is de%ned by the contributions due to the two-photon
processes as

B = !r
120
17

2
|�| : (171)

In the same case of large detuning the diEusion coeQcient (159) estimated at zero velocity is

D(0) � 46
17
˜2k22

42

�2 : (172)

High friction coeQcient due to the dipole radiation force and a relatively small value of the diEusion
coeQcient due to the velocity deep in the momentum diEusion coeQcient are %nally responsible
in the above case for the sub-Doppler laser cooling down to a temperature (165) (Dalibard and
Cohen-Tannoudji, 1989; Ungar et al., 1989; Chang et al., 1999a, 2001),

T =
23
30

˜42

kB|�| : (173)

The above equation for the temperature is valid under the basic assumption of the kinetic theory that
the momentum width of the atomic density matrix elements exceeds the photon momentum ˜k: This
principal assumption is always satis%ed when the temperature (173) exceeds the recoil temperature,
T ¿TR = ˜!r=kB.

More complicated multilevel schemes shown in Fig. 20 exhibit similar sub-Doppler temperatures.
For any of these schemes the dipole radiation force includes a narrow structure located at zero veloc-
ity. The slope of the dipole radiation force near zero velocity which de%nes the friction coeQcient B
increases when the number of levels increases (Fig. 21). The diEusion coeQcients D =Dzz as func-
tions of velocity show narrow dips located at zero velocity (Fig. 22). Starting from a (5+7)-level
atom these dips exhibit additional narrow structures most clearly seen for (7+9)- and (9+11)-level
atoms (Fig. 23).

The above behavior of the forces and the diEusion coeQcients has a natural explanation in terms of
atomic coherences and populations. In cases of more complicated atomic schemes higher even-order
multiphoton processes give additional contributions to the ground-state coherences and populations.
In the case of a (7+9)-level scheme there are three basic multiphoton processes: 2-photon process
contributing to the ground-state coherence R0

g−1g1
, 4-photon process contributing to the ground-state

coherence R0
g−2g2

, and 6-photon process contributing to the ground-state coherence R0
g−3g3

. The lowest
order 2-photon process gives the most broad velocity structure, the next 4-photon process a medium
width structure, and the highest 6-photon process the narrowest structure. This narrowest structure
is accordingly responsible for the slope of the force at zero velocity, i.e. for the friction coeQcient
for a (7+9)-level atom (Fig. 21). In a similar way the above narrowest structure is responsible for
the %ne structure of the velocity dip in the diEusion coeQcient for a (7+9)-level atom (Fig. 22).
The same general explanation can be provided for other atomic schemes of Fig. 20.

Figs. 23 and 24 show the dependence of the atomic temperature on the value of a negative detun-
ing and the saturation parameter for the above four atomic schemes. For any given atomic scheme
the value of the temperature decreases approximately inverse proportionally to the detuning and
proportionally to the saturation parameter. For diEerent schemes the temperature decreases approx-
imately inverse proportionally to the number of levels. All the above features of the temperature
behavior reFect the contributions of the multiphoton processes responsible for the friction coeQcient
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(a)

(b)

(c)

(d)

Fig. 20. Schemes of a (3+5)-, (5+7)-, (7+9)- and (9+11)-level atom excited by counter-propagating circularly polarized
laser waves composing a �+ −�− %eld con%guration. Arrows show the �+ (gM → eM+1) and �− (gM → eM−1) excitation
transitions. Numbers show the relative strengths of the dipole �± transitions.
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Fig. 21. Dipole radiation force as a function of atomic velocity v = vz for a (3+5)-level atom (solid line), (5+7)-level
atom (dashed line), (7+9)-level atom (dotted line), and (9+11)-level atom (dash-dotted line) excited by a �+ − �− %eld
con%guration at saturation parameter G = 242=22 = 4 and detuning � = −202.

Fig. 22. Detailed structure of the diEusion coeQcient D = Dzz at small velocities for the same parameters as in Fig. 21.

and the diEusion coeQcient at zero velocity. It is to be stressed that the comparisons of diEerent
atomic schemes are made above in terms of universally de%ned dimensionless saturation parameter
G = 242=22. For any practical purposes the saturation parameter can equivalently be represented as
G = I=IS, where I = (c=8))E2

0 is the intensity of a single travelling wave with polarization �+ or �−
and the saturation intensity IS = ˜2!3

0=6)c
2 does not explicitly depend on the quantum numbers of

the atomic scheme.
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Fig. 23. Atomic temperature as a function of detuning for a (3+5)-level atom (solid line), (5+7)-level atom (dashed
line), (7+9)-level atom (dotted line), (9+11)-level atom (dash-dotted line) excited by a �+ − �− %eld con%guration at
saturation parameter G = 4. Temperature is normalized on the Doppler temperature TD = ˜2=kB.

Fig. 24. Atomic temperature as a function of saturation parameter for a (3+5)-level atom (solid line), (5+7)-level
atom (dashed line), (7+9)-level atom (dotted line), and (9+11)-level atom (dash-dotted line) in a %eld of a �+ − �−

con%guration for detuning � = −202.

6.2.2. lin⊥lin laser =eld con=guration
In the case of a lin⊥lin laser %eld con%guration de%ned by Eqs. (105) and (106) the value of

sub-Doppler temperature is close to that for a �+ − �− con%guration (Fig. 25). Both considered
cases, a �+ − �− con%guration and a lin⊥lin con%guration, thus show very close values of the
temperature at a large detuning. This has a natural explanation in terms of the light shift. At a



S. Chang, V. Minogin / Physics Reports 365 (2002) 65–143 127

Fig. 25. Atomic temperature as a function of detuning for a lin⊥lin con%guration (solid lines) and the %rst �+ − �−

con%guration (dashed lines) for saturation parameter G = 1 and 4. Temperature is normalized on the Doppler temperature
TD = ˜2=kB.

low eEective saturation the entire atomic population is localized on the ground-state sublevels. The
internal atomic energy is thus close to zero and the translational atomic temperature is de%ned by
the value of the light shift. For large detunings, |�|�4; 2, and small velocities, k|v|�2, the light
shift and accordingly the atomic temperature apart from a numerical factor is

E ∼ kBT ∼ ˜4
2

|�| :

The value of the atomic temperature at a large detuning is thus de%ned by the same quantity both
for a lin⊥lin con%guration and a �+ − �− con%guration.

7. Magneto-optical trap

So far we have discussed the application of the kinetic approach to dynamics of multilevel atoms
in pure laser %elds. The approach can, however, be used for a quantitative description of atomic
motion not only in laser %elds but also in the combined %elds of the laser %elds and other %elds.
In this section we discuss the application of the kinetic approach to the description of dynamics of
multilevel atoms in a magneto-optical trap (MOT) which explores both the laser %eld and a static
magnetic %eld (Dalibard, 1987; Raab et al., 1987).

Basic features of the MOT capable of operating at sub-Doppler temperatures can be considered
on a basic model of a (3+5)-level atom placed in a weak inhomogeneous magnetic %eld (Fig. 26).
This multilevel interaction scheme includes all the basic features common to the real experimen-
tal schemes (Drewsen et al., 1994). In the scheme the inhomogeneous magnetic %eld produces the
position-dependent Zeeman shifts. The laser %eld chosen in a �+ − �− con%guration (82) is respon-
sible for both one-photon absorption (emission) processes and two-photon optical processes. The
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Fig. 26. Zeeman-shifted energy levels for a (3+5)-level atom in a one-dimensional magneto-optical trap. Atoms are placed
in a weak inhomogeneous magnetic %eld and irradiated by a �+ − �− %eld con%guration.

frequencies ! of the laser waves are assumed to be red detuned with respect to the frequency of
the nonperturbed atomic transition, !¡!0:

We assume below that the atoms are placed in a weak inhomogeneous magnetic %eld varying
along axis Oz;

B= B(z)ez; B(z) = az ; (174)

where a is the gradient of the magnetic %eld in the center of the trap. The laser %eld is assumed to
be near resonance with two hyper%ne structure states, the ground state |�g; Fg = 1〉 with energy E0

g

and the excited state |�e; Fe = 2〉 with energy E0
e . Both states are split in the magnetic %eld over the

magnetic sublevels Mg = 0;±1 and Me = 0;±1;±2:

7.1. Quantum-kinetic equations

For the considered scheme, the Hamiltonian can be represented as a generalization of the Hamil-
tonian (117),

H = Ham − (˜2=2M) �−d · E ;

Ham = Ha −−→( · B ; (175)

where the atomic Hamiltonian Ham includes a proper atomic Hamiltonian Ha and the term describing
the dipole interaction of the atom with inhomogeneous magnetic %eld (174). The Zeeman shifts of
the magnetic substates can be considered for simplicity in a lowest linear approximation in the value
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of the magnetic %eld. For the ground-state and excited-state magnetic sublevels,

〈FgMg| − −→( · B|FgMg〉 = (BggB(z)Mg ;

〈FeMe| − −→( · B|FeMe〉 = (BgeB(z)Me ;
(176)

where (B is the Bohr magneton, gg and ge are the Lande g-factors for the ground and excited state
and Fg = 1; Mg = 0;±1; Fe = 2; Me = 0;±1;±2.

A natural approach to the description of atomic dynamics in the above scheme is the use of the
quantum-kinetic equations (138). In this section we use the notations �kl(r; p) for the density matrix
elements �̃kl(r; p) entering Eqs. (138), (140) thus omitting the upper “tilde” for simplicity. Before
writing the equations we make two simpli%cations. First, we take into account the fact that the
Zeeman-shifted energies vary over a distance much larger than the size of the atomic wave packet
and accordingly neglect the integral structure of the energy terms in Eqs. (140). Next, we exclude
an explicit time dependence in Eqs. (140) by changing the oE-diagonal density matrix elements as

�g�eB → �g�eB exp i!t ;

where ! is a frequency of the monochromatic laser %eld (82). After the above changes the Wigner
density matrix equations describing the dipole interaction of a (3+5)-level atom with laser %eld (82)
in the presence of the magnetic %eld (174) basically diEer from Eqs. (157) in terms of the additional
energy terms. Some basic types of equations are as follows:

d
dt

�g0g0 =
i4√

2
(eikz�(−)

e−1g0
+ e−ikz�(+)

e1g0
)ei�t + c:c: + 2

(
〈�−1

e−1e−1
〉 +

4
3
〈�0

e0e0
〉 + 〈�1

e1e1
〉
)

;

d
dt

�g−1g1 = i4(�(−)
e−2g1

− �(+)
g−1e2

)eikz +
i4√

6
(�(+)

e0g1
− �(−)

g−1e0
)e−ikz

+ 2

(√
2
3
〈�−1

e−2e0
〉 + 〈�0

e−1e1
〉 +

√
2
3
〈�1

e0e2
〉
)

+ 2i!g�g−1g1 ;

d
dt

�g1e2 = −i4(�(−)
g1g1

− �(+)
e2e2

)e−ikz +
i4√

6
eikz�(−)

e0e2
− (2 + i(!g − 2!e + �))�g1e2 : (177)

In the above equations the dipole interaction terms are de%ned by Eqs. (139) and the spontaneous
relaxation terms by Eqs. (141)–(142). The averaging over the spontaneous angular distribution is
speci%ed by Eq. (151). The detuning is de%ned as � = ! − !0; where !0 is the atomic transition
frequency in the absence of the magnetic %eld. The Zeeman frequency shifts entering the above
equations,

!g = (Bggaz=˜; !e = (Bgeaz=˜ ; (178)

determine the position-dependent Larmor frequencies !Lg = |!g|; !Le = |!e| for the ground and
excited states. Depending on signs of the Lande g-factors the Zeeman shifts !g and !e can be
positive or negative. Note that the adopted simpli%cation for the energy terms in Eqs. (177) means
that small magnetic dipole forces fk = 9〈k|−→( · B|k〉=9r which do not play any noticeable role in
atomic dynamics in the MOT are neglected.
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7.2. Dipole radiation force

The procedure of simpli%cation of the quantum-kinetic equations describing the motion of a
(3+5)-level atom in the MOT coincides with the procedure of Section 5.3.3 for the case of ab-
sence of the magnetic %eld. Accordingly, the dipole radiation force on a (3+5)-level atom in the
MOT is de%ned by the equation formally identical to Eq. (92) while an explicit equation for the force
diEers from Eq. (96) by evident change of the detunings. The dipole radiation force on the atom
in the MOT is the velocity- and position-dependent quantity. In a physically most interesting case
of a low one-photon saturation,

sp;q;± = 42=(22 + �2
p;q;±)�1 ; (179)

where �p;q;± = � + p!g + q!e ± kv are the position- and velocity-shifted detunings the force F =
Fez; F = F(z; v) is represented as

F(z; v) = ˜k 2
[(

2s1;−2;− − 1
3
s1;0;+

)
N+ + (s0;−1;− − s0;1;+)N0 −

(
2s−1;2;+ − 1

3
s−1;0;−

)
N−

+
1
6
(s−1;0;− − s1;0;+)(A + A∗) − i

62
(s−1;0;−�−1;0;− + s1;0;+�1;0;+)(A− A∗)

]
; (180)

where N0=R0
g0g0

; N±=R0
g±1g±1

are the ground-state populations and A=S0
g−1g1

is the ground-state coher-
ence. Formula (180) de%nes the dipole radiation force in a low-intensity limit when the upper-state
atomic populations can be neglected compared with the ground-state populations. Note that the
ground-state coherence A is of the same order of magnitude as the ground-state populations.

The structure of the force F(z; v) can be understood by separately considering the velocity depen-
dence of the force at diEerent atomic coordinates and the coordinate dependence at zero velocity.
For small Larmor frequencies, !Lg; !Le�2, i.e. at small displacements from the origin of the trap,
and at low velocities, kv�2; the force can be found analytically. At a negative detuning, �¡ 0; the
force reduces to the friction force and potential force,

F(z; v) = F(0; v) + F(z; 0) ;

where the friction force F(0; v) coincides with the friction force F de%ned by Eq. (101) and the
potential force is (Jun et al., 1999a,b)

F(z; 0) =− 5
11
˜k 2 G|�|=22

(1 + �2=22)2

(44=17)(3!e − !g)(̃2 + (8!e − 3!g)!2
g

!2
g + (̃2

− 5
44
˜k 2 G2

(1 + �2=22)2

|�|!g

!2
g + (̃2 : (181)

Here the dimensionless saturation parameter G and the halfwidth of the two-photon resonance (̃ are
de%ned by Eqs. (100) and (102). The position-dependent Zeeman shifts !g and !e are de%ned by
Eqs. (178).

Fig. 27 shows the coordinate dependence of the potential force F(z; 0) near the origin of the trap.
This dependence includes two diEerent parts, the physical origin of which is the same as the origin
of the two parts in the velocity-dependent force F(0; v) de%ned by Eq. (101). The broad part in the
coordinate dependence of the force F(z; 0) is due to the one-photon absorption (emission) processes
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Fig. 27. Position-dependent force F(z; 0) on a (3+5)-level atom for the case gg = ge at saturation parameter G = 4 and
for detuning �=−102 (solid line) and �=−202 (dashed line). The displacement of the atom from the center of the trap
is normalized on a characteristic distance zm = ˜2=(Bga at which the Zeeman frequency shifts equal half of the natural
linewidth.

being slightly perturbed by the two-photon processes. Narrow structure in the force F(z; 0) comes
from the two-photon processes related to the ground-state coherence A = S0

g−1g1
: The ground-state

coherence appears mainly due to the two-photon optical processes connecting two ground-state sub-
levels g−1; g1: At the origin of the trap, z=0; the two-photon processes are eEective at the velocities
satisfying the two-photon resonance condition, (!± kv) − (!∓ kv) � 0; i.e. at the velocities v � 0:
For motionless atom, v = 0; the two-photon resonance condition is (! ± !g) − (! ∓ !g) � 0; and
accordingly the two-photon processes are eEective at the origin of the trap where !g � 0 and
z � 0. At low eEective saturation the frequency width of the two-photon resonance is determined
by the quantity �! = (̃: Accordingly, the velocity width of the two-photon resonance is about the
value �v = (̃=k and the coordinate width of the two-photon resonance is determined by the quantity
�z = (̃˜=(Bgga:

7.3. Double-structure potential well

The potential force (181) can be integrated to give the potential energy for cold atoms,

U (z) = −
∫ z

0
F(z; 0) dz : (182)

When the signs of the Zeeman shifts are chosen in such a way that the force F(z; 0) is an attractive
force, the potential energy (182) describes the potential well of the MOT. The force F(z) = F(z; 0)
owing to its two-component structure generally creates the two-component potential (Fig. 28). At a
negative detuning, the MOT potential well may accordingly consist of a double-structure potential
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Fig. 28. Potential U (z) of the magneto-optical trap for a (3+5)-level atom for the case gg = ge, at saturation parameter
G = 4, and for detuning � = −162 (solid line), � = −182 (dashed line), and � = −202 (dotted line). Atomic coordinate
is normalized on the characteristic distance zm = ˜2=(Bga:

well. The upper part of the well caused by the one-photon processes is relatively broad while the
bottom part caused by the two-photon processes is relatively sharp.

The double structure of the MOT potential well can be illustrated by a simple model example of
equal Zeeman frequency shifts, !g = !e = Y! = (Bgaz=˜¿ 0; gg = ge = g; and for a case of large
detuning, |�|�2; when parameter (̃ � √17=33G22=4|�| and the potential force (181) has a simple
form

F(z; 0) � −25
11

G23

|�|3 ˜k Y!− 60
17

2
|�|

(̃2

Y!2 + (̃2˜k Y! : (183)

The force (183) creates the double-structure potential well described by the potential

U (z) � 25
22

G23

|�|3 ˜2
k
zm

z2 +
5
88
˜2G

223

|�|3 kzm ln

(
1 +

528
17

�2

G222

(
z
zm

)2
)

; (184)

where zm = ˜2=(Bga is a characteristic distance from the center of the trap at which the Zeeman
frequency shifts equal to half of the natural linewidth. The %rst part of the potential (184) is basically
due to the one-photon processes and the second one is due to the two-photon processes.

It is to be noted that the value of the sub-Doppler kinetic energy kBT according to Eq. (173) is
generally of the same order of magnitude as the threshold energy that separates the sharp bottom
part of the well from the upper broad part. For that reason, the spatial distribution of cold atoms in
the double-structure potential well is generally a two-component distribution.
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(a) (b)

Fig. 29. Scheme of a far-oE-resonance optical dipole trap (FORT) (a) and scheme of dipole transitions in a (3+5)-level
atom in the FORT (b).

8. Optical dipole traps

In this section we consider an application of the kinetic approach to the dynamics of multilevel
atoms in spatially inhomogeneous laser %elds on an example of the optical dipole traps. Among
diEerent con%gurations of optical atom traps, of fundamental importance is a far-oE-resonance optical
dipole trap (FORT) based on a single focused far-detuned laser beam (Ashkin, 1978; Gordon and
Ashkin, 1980; Chu et al., 1986; Miller et al., 1994; Corwin et al., 1999). The FORT produces a
nearly conservative potential well for atoms, but incorporates an inevitable heating due to the photon
recoil associated with the scattered laser light. Although the heating rate may be very small at very
large detuning from the resonance, the photon recoil heating introduces an upper limit on the lifetime
of atoms in the trap.

Below we present a kinetic theory analysis of the FORT composed of a single red-detuned trapping
laser beam and describe a modi%cation of the FORT which includes an additional red-detuned cooling
laser %eld that prevents the heating due to the photon recoil (Garraway and Minogin, 2000). The
theory of the FORT is considered below for a simplest realistic model of a (3+5)-level atom.

8.1. Single-beam optical dipole trap

We assume for de%niteness that the FORT is based on a linearly polarized trapping laser beam
(Fig. 29),

Et = e0E0t(r) cos(ky − !tt) ; (185)

which is de%ned by a unit polarization vector e0 = ez; spatially nonuniform amplitude E0t(r); and
the wave vector kt = key (k = !t=c). For a chosen interaction scheme, the atomic Hamiltonian has
a standard form (117),

H = Ha − ˜2

2M
∇2 − d · Et ; (186)
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where the Hamiltonian Ha describes the internal atomic states with energy levels Eg0 ; Eg±1 and
Ee0 ; Ee±1 ; Ee±2 and the last term describes the dipole interaction between the atom and the electric
%eld Et of the trapping laser beam.

Consider %rst the trapping potential produced by the laser beam. The semiclassical density matrix
equations describing the dipole interaction of a (3+5)-level atom with the %eld (185) can be written
in RWA according to Eqs. (61). Some types of equations for a considered scheme are as follows:

d
dt

�g−1g−1 =
i
√

3
2

4(r) e−i(ky−Vt)�e−1g−1 + c:c: + 2
(

2�e−2e−2 + �e−1e−1 +
1
3
�e0e0

)
;

d
dt

�g0g0 = i4(r) e−i(ky−Vt)�e0g0 + c:c: + 2
(
�e−1e−1 +

4
3
�e0e0 + �e1e1

)
;

d
dt

�g0e0 = −i4(r) e−i(ky−Vt)(�g0g0 − �e0e0) − 2�g0e0 :

(187)

The position-dependent Rabi frequency due to the trapping laser beam is de%ned here with respect
to the most strong )-type dipole transition |�g; Fg = 1; Mg = 0〉 − |�e; Fe = 2; Me = 0〉;

4(r) =
〈�e2‖d‖�g1〉E0t(r)√

30˜
; (188)

and the detuning is . = !t − !0:
Eliminating an explicit time and position dependence in the above equations with the substitutions,

�g−1e−1 = �g−1e−1e
−i(ky−Vt); �g0e0 = �g0e0e

−i(ky−Vt); �g1e1 = �g1e1e
−i(ky−Vt); : : :

and solving next the equations for a steady state, one can %nd the dipole radiation force on the atom
according to Eq. (65). The force on a (3+5)-level atom in laser beam (185) includes, as usual, two
partial forces, the gradient force and the radiation pressure force,

F= Fgr + Frp ;

Fgr = 2˜(∇4(r))Re

(
�g0e0 +

√
3

2
(�g−1e−1 + �g1e1)

)
;

Frp = 2˜k4ey Im

(
�e0g0 +

√
3

2
(�e−1g−1 + �e1g1)

)
:

(189)

In the case of large negative detunings, |V|�4(r), and for slowly moving atoms (v ≈ 0) the
forces are

Fgr =
30
17
˜∇42(r)

|.| ;

Frp =
30
17
˜k 2ey

42(r)
.2 : (190)

The gradient force produces the potential well for the atoms that diEers from that for a two-level
atom (79) by a numerical factor only,

U (r) = −
∫ r

−∞
Fgr · dr= −30

17
˜4

2(r)
|.| : (191)
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The radiation pressure force produces an additional asymmetric potential well which can be neglected
at large detuning.

The lifetime � of the atom in the FORT is always restricted by the diEusion heating according to
a general estimation,

� � 2MU0

D(0)
;

where U0 is the depth of the potential well (191) and D(0) is the momentum diEusion coeQcient
at zero velocity. Taking into account the fact that according to Eq. (191) the depth of the potential
well is U0 � ˜42(0)=|.| and according to Eq. (152) the diEusion coeQcient is D(0) � ˜k2242=.2;
one can see that the lifetime of the atom in the FORT is about � � !−1

r (|.|=2); where !r is the
recoil frequency. When the detuning increases the lifetime of the atom in the FORT thus grows but
with a simultaneous decrease in the depth of the potential well.

8.2. Single-beam dipole trap with superimposed laser cooling

It was proposed that the heating mechanism in the FORT might be suppressed by adding the
cooling laser %eld to a focused trapping laser beam (Gordon and Ashkin, 1980; Chu et al., 1986).
The experiments with diEerent types of the cooling laser %elds have proved that the addition of the
cooling %eld can increase the lifetime of the atoms and even the atomic density in the trap (Lee
et al., 1996; Boiron et al., 1998).

The addition of the cooling %eld may have a profound eEect on all the basic parameters of
the FORT since the cooling %eld may strongly inFuence the atomic populations and coherences.
Typically any cooling laser %eld operates at a detuning less than the detuning of the trapping laser
beam. The cooling %eld may thus be responsible not only for perturbation of the steady-state internal
atomic state but the perturbation of the trapping potential as well. The FORT with an additional
cooling laser %eld was theoretically discussed for the simplest model of a two-level dipole interaction
scheme (Gordon and Ashkin, 1980). A two-level model has, however, a very limited connection
with real experimental techniques which typically explore multilevel dipole interaction schemes.
Physically, there is a major diEerence between the models of a two-level atom and a multilevel
atom in applications related to the trapping and cooling atoms. In a two-level model both trapping
and cooling %elds excite atoms on the same atomic transition. As a result, for a two-level atomic
scheme in the FORT, the depth of the potential well and the cooling limit have generally the same
order of magnitude de%ned by the Doppler temperature. In multilevel atomic schemes the trapping
and cooling laser %elds can explore principally diEerent atomic transitions. The trapping %eld can
produce a potential well due to the one-photon transitions while the cooling laser %eld can cool
atoms down to the sub-Doppler temperatures due to the two-photon transitions. It is thus important
that in multilevel atomic schemes the optical processes used for trapping atoms in the FORT and
those for the sub-Doppler cooling can have diEerent physical origins. The use of the diEerent optical
processes for trapping and cooling multilevel atoms thus raises questions on basic parameters of
the trap and the lifetime of atoms achievable in the FORT with superimposed sub-Doppler cooling
process.

We discuss below the scheme of the FORT for a (3+5)-level atom interacting with the trapping
laser %eld (185) and the cooling laser %eld (82).
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8.2.1. Quantum-kinetic equations
To analyze the operation of the trap at large detunings, it is suQcient to consider the quantum-

kinetic equations at small optical saturation. We will accordingly take into account one- and two-
photon optical processes, and neglect higher-order optical processes. To simplify the consideration
of the equations of motion, we additionally neglect the spatial variation in the trapping laser beam
amplitude E0t(r). The eEect of the spatially inhomogeneous trapping laser beam will be taken into
account separately.

A set of the atomic density matrix equations in the Wigner representation and RWA describing
an interaction of a (3+5)-level atom with laser waves (185) and (82) of constant amplitude at
weak optical saturation can be written according to general equations (134). Some types of the
quantum-kinetic equations for a considered scheme are:

d
dt

�g−1g−1 =
i
√

3
2

4e−i(ky−Vt)�(+)
e−1g−1

+ i0eikz+i�t�(−)
e−2g−1

+
i0√
6
e−ikz+i�t�(+)

e0g−1
+ c:c :

+ 2
(

2〈�−1
e−2e−2

〉 + 〈�0
e−1e−1

〉 +
1
3
〈�1

e0e0
〉
)

;

d
dt

�g0g0 = i4e−i(ky−Vt)�(+)
e0g0

+
i0√
2
eikz+i�t�(−)

e−1g0
+

i0√
2
e−ikz+i�t�(+)

e1g0
+ c:c :

+ 2
(
〈�−1

e−1e−1
〉 +

4
3
〈�0

e0e0
〉 + 〈�1

e1e1
〉
)

;

d
dt

�g−1g1 =
i0√
6
(e−ikz+i�t�(+)

e0g1
− e−ikz−i�t�(−)

g−1e0
)

+ 2

(√
2
3
〈�−1

e−2e0
〉 + 〈�0

e−1e1
〉 +

√
2
3
〈�1

e0e2
〉
)

;

d
dt

�g0e0 =−i4e−i(ky−Vt)(�(−)
g0g0

− �(+)
e0e0

) +
i0√
2
(eikz+i�t�(−)

e−1e0
+ e−ikz+i�t�(+)

e1e0
)

− i0√
6

(e−ikz+i�t�(−)
g0g−1

+ eikz+i�t�(+)
g0g1

) − 2�g0e0 : (192)

In the above equations 0 and � are the Rabi frequency for the cooling laser %eld and the detuning
of the cooling %eld,

0 =
〈�e2‖d‖�g1〉E0c

2
√

5˜
; � = !c − !0 : (193)

Note that the Rabi frequency is de%ned with respect to the strongest �-type dipole transition as in
Eq. (90).

8.2.2. Quasiclassical description
The reduction of the initial quantum-kinetic equations to the quasiclassical Fokker–Planck equation

can be done by a standard procedure of Section 5.1. Recalling that the initial equations include the
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terms describing only one- and two-photon processes one can %rst introduce the substitutions which
take into account only one- and two-photon processes:

�g−1e−2 = �g−1e−2e
ikz+i�t ; �g−1e−1 = �g−1e−1e

−iky+iVt ; �g−1e0 = �g−e0e
−ikz+i�t ;

�g−1g0 = �1
g−1g0

e−ik(y+z)+i(.−�)t + �2
g−1g0

eik(y−z)−i(.−�)t ; �g−1g1 = �g−1g1e
−2ikz; : : : :

After that the initial microscopic equations reduce to the equations which do not include an explicit
time and coordinate dependence.

Next, we apply a standard procedure of the transition to the quasiclassical description and %nd
the force and momentum diEusion tensor entering the Fokker–Planck equation (148) as

Frp = 2˜k0 Im
[
(S0

e2g1
− S0

e−2g−1
) +

1√
2
(S0

e1g0
− S0

e−1g0
) +

1√
6
(S0

e0g−1
− S0

e0g1
)
]
; (194)

Dii = ˜2k22
[
��
ii

(
R0

e−2e−2
+

1
2
R0

e−1e−1
+

1
3
R0

e0e0
+

1
2
R0

e1e1
+ R0

e2e2

)

+ �)
ii

(
1
2
R0

e−1e−1
+

2
3
R0

e0e0
+

1
2
R0

e1e1

)]

+ �iz˜2k20 Im
[
(T 1

g1e2
+ T 1

e−2g−1
) +

1√
2
(T 1

g0e1
+ T 1

e−1g0
) +

1√
6
(T 1

g−1e0
+ T 1

e0g1
)
]
; (195)

where the coeQcients ��
ii; �)

ii are de%ned by Eq. (153). Note, that in the above derivation the laser
beams are considered as plane light waves. The dipole radiation force in a %eld of plane waves
(194) is accordingly called the radiation pressure force, F= Frp = ezFrp.

8.2.3. Dipole gradient force
The derivation of the gradient force Fgr associated with the gradient of the trapping laser beam

amplitude E0t=E0t(r) can be done in a way that generalizes the procedure considered in the preceding
subsection. Representing the trapping laser beam amplitude in the form of a Fourier expansion,

E0t(r) = (2))−3=2
∫
E0t(q) eiqr d3q ; (196)

one should introduce into the Eqs. (192) the following substitutions:

i4(r)�ab(p) → (2))−3=2
∫

i4(q)eiqr�ab(p+ 1
2˜q) d3q : (197)

For a laser beam amplitude that varies in space on a scale which is large compared to the size
of the atomic wave packet, it is suQcient to expand the density matrix elements to a %rst order in
the small momentum ˜q;

�ab(p+ 1
2˜q) � �ab(p) + 1

2˜q
9
9p�ab(p) : (198)
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This transforms the terms in the equations as

i4(r)�ab(p) → i4(r)�ab(p) +
˜
2
∇4(r)

9
9p�ab(p) : (199)

When the substitutions (199) are taken into account the Fokker–Planck equation includes, in the
above approximation, the total dipole radiation force as a sum of the gradient force and the radiation
pressure force (194), F= Fgr + Frp:

The gradient force is then determined by the steady-state optical coherences as

Fgr = 2˜(∇4(r))Re(S0
g0e0

+
√

3
2 (S0

g−1e−1
+ S0

g1e1
)) : (200)

Note that a formal mathematical expression for this part of the total radiation force coincides with
that de%ned by Eq. (189). The explicit expressions given by Eqs. (200) and (189) are generally
diEerent since the functions S0

ab describe the interaction of the atom with the total laser %eld, while
the functions �ab describe the interaction of the atom with the trapping laser beam only.

8.2.4. Optical potential depth and kinetic energy
We next consider a regime characterized by two important limits. That is, we consider large

detunings,

|4|; |�|�2 ; (201)

and low optical saturation,

st =
42

.2�1; sc =
0 2

�2 �1 ; (202)

when the one-photon and two-photon processes play a dominant role in the time evolution of the
atomic density matrix elements. In addition to the above approximations, we restrict our treatment
to the case of slowly moving atoms,

Ky =
kvy
2
�1; Kz =

kvz
2
�1 : (203)

Under the above conditions the equations for the functions R0
aa; S

0
ab and T 1

ab, which follow from Eqs.
(192) expanded to the %rst order in the photon momentum, have a simple analytical solution. When
solving the last equations one can note that the eQciencies of the two-photon optical processes
between the ground-state magnetic sublevels depend crucially on two parameters ( and A;

( =
5
6
0 2

�2 2; A =
42

.2 2 ; (204)

which de%ne the frequency widths of the two-photon resonance structures related to the ground-state
coherences �g−1g1 and �g−1g0 ; �g0g1 . Physically, the origin of these two-photon frequency widths is
the same as for a (3+5)-level atom in the %eld of a �+ −�− laser %eld con%guration (Section 3.3).

Since the two-photon processes induced by the cooling laser %eld are of importance only for the
process of sub-Doppler cooling of atoms in the trap, the physical meaning of parameters ( and A
allows us to introduce two conditions necessary for separating the cooling and trapping processes:
i.e.

A�(�2 : (205)
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The left inequality guarantees that the trapping %eld does not inFuence the two-photon cooling
process, while the right inequality is needed for the two-photon friction coeQcient to be greater than
the one-photon friction coeQcient.

Under conditions (205), and in lowest order in the small parameters st ; sc; Ky and Kz, the low-
saturation, low-velocity solutions give the one-photon coherences entering Eq. (200) as

S0
g−1e−1

=
−i

√
34=2

2 + i.
N−; S0

g0e0
=

−i4
2 + i.

N0; S0
g1e1

=
−i

√
34=2

2 + i.
N+ : (206)

In the above the steady-state ground-state populations N− = R0
g−1g−1

; N0 = R0
g0g0

and N+ = R0
g1g1

,
connected to the ground-state two-photon coherence �g−1g1 , are

N− =
1

2.̃

(
13
12

0 4

�2 − 15
6

0 2

|�|kvz + 9k2v2
z

)
;

N0 =
2

.̃

(
1
6
0 4

�2 + k2v2
z

)
;

N+ =
1

2.̃

(
13
12

0 4

�2 +
15
6

0 2

|�|kvz + 9k2v2
z

)
;

(207)

and the common denominator is

.̃ =
17
12

0 4

�2 + 11k2v2
z : (208)

The other steady-state coherences and populations entering Eqs. (194) and (195) are de%ned by
similar equations,

S0
g−1e−2

=
−i0
2 + i�

N−; S0
g−1e0

=
−i0=

√
6

2 + i�
N−; S0

g0e−1
=

−i0=
√

2
2 + i.

N0; : : : : (209)

The atomic coherences, together with the values of the ground-state populations, give a new value
of the gradient force at zero velocity and negative detuning,

Fgr =
55
68
˜∇42(r)

|.| : (210)

In a corresponding way they give a new value of the potential,

U (r) = −
∫ r

−∞
Fgr · dr= −55

68
˜4(r)

4(r)
|.| ; (211)

which is three times less than the unperturbed potential (191). The reduced value of the gradient force
and the potential in the total laser %eld is naturally explained by the dominant role of the cooling
%eld in producing atomic populations in accordance with the left condition in Eq. (205). While the
trapping %eld alone produces the ground-state atomic populations at zero velocity as N−=N+=13=34;
N0 = 4=17; the cooling %eld redistributes the populations to the values N− = N+ = 9=22; N0 = 4=22:
This redistribution, “multiplied” by the relative strengths of the dipole transitions, gives the decrease
in the potential according to Eq. (211).
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Substitution of the steady-state atomic coherences and ground-state populations into Eq. (194)
gives an explicit expression for the radiation pressure force in a low-saturation, low-velocity approx-
imation. Since the above analytical expressions (207) and (209) neglect a weak velocity dependence
due to the one-photon (Doppler) processes, the radiation pressure force is described in our analysis
only near zero velocity, i.e. in the region |v| . (=k. In the case of a red-detuned cooling %eld,
where �¡ 0, the low-velocity part of the radiation pressure force reduces to the cooling force. If
force (194) taken at red detuning and at low velocities is represented in a standard form of the
friction force (162) the friction coeQcient is B = (120=17)2!r=|�|; where !r = ˜k2=2M is a re-
coil frequency. The diEusion coeQcient at zero velocity, D(0); can be estimated as before to give
D(0) = (46=17)˜2k2202=�2:

The diEusion and friction coeQcients jointly de%ne the average kinetic energy and temperature of
the atoms in the trap which according to Eq. (165) is

E = kBT =
23
30
˜02

|�| : (212)

8.2.5. Conditions for stable trapping
Assuming now that kinetic energy (212) of cold trapped atoms is much less than the depth U (0)

of the potential well (211) one can get a suQcient condition for stable atomic trapping (Garraway
and Minogin, 2000),

0 2

|�|�
42(0)
|.| : (213)

Comparing the last condition with the condition for deep laser cooling (205) one can see that both
conditions are satis%ed if the detuning of the trapping %eld is much larger than that of the cooling
%eld,

|.|�|�| : (214)

The above two conditions, de%ned by Eqs. (205) and (213), justify the idea of a stable dipole trap.
The stable atomic trapping in the optical dipole trap can thus be achieved when the trapping %eld
has no eEect on the two-photon cooling process, and the cooling %eld does not change the structure
of the trapping potential but changes only the numerical value of the trapping potential well.

The lifetime of the atoms in the trap associated with the diEusive heating can %nally be estimated
as

� = $eU (0)=E (215)

where $ is the oscillation frequency of an atom in the trap and the Boltzmann factor U (0)=E
considerably exceeds unity.

The above evaluations of the conditions necessary and suQcient for stable atomic trapping can be
illustrated by a speci%c example. Assume that the Rabi frequency and the detuning for a cooling %eld
are accordingly 0=2 and |�|=202 and the Rabi frequency and the detuning for the trapping %eld are
4=1022 and |.|=1042. For these parameters the one-photon widths A=10−42 and (=2:5× 10−32
satisfy conditions (205) for deep laser cooling. In their turn, the kinetic energy (212), estimated as
E = 0:04˜2, and the potential well depth, estimated according to Eq. (211) as U (0) = 0:8˜2, satisfy
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the suQcient condition (213) for stable atomic trapping giving for the Boltzmann factor a suQciently
large value U (0)=E = 20.

9. Conclusion

We conclude by emphasizing that the density matrix approach is a powerful technique which can
be successfully applied to many problems of atomic excitation and dynamics in laser %elds. We do
hope that the approach described and the examples presented in this paper will help the reader to
extend the application of the technique to new exciting problems.

We %nally stress that in all the considered problems we mainly paid attention to basic theoretical
procedures and the features of atomic dynamics speci%c to multilevel interaction schemes. Following
the basic purpose of this paper to describe the applications of the density matrix technique to the
problems of atomic dynamics we referred only to basic theoretical papers in the %eld. For a latest
review of achievements in the %eld of control of atomic dynamics and motion by laser light we refer
the reader to review articles and books (Dowling and Gea-Banacloche, 1996; Jessen and Deutsch,
1996; Berman, 1997; Adams and Riis, 1997; Grimm et al., 1999; Metcalf and van der Straten, 1999;
Balykin et al., 2000).
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